

Climate Control

IMITA

PM 512

Valvola di sovrapressione Valvola di by-pass differenziale

PM 512

La valvola by-pass differenziale PM 512, idonea per impianti di riscaldamento e raffrescamento a portata variabile, è dotata di una membrana morbida in NBR che assicura la massima durata nel tempo e di una molla ausiliaria che apre la valvola in caso di rottura della membrana. Progettata per consentire un facile intervento in spazi ristretti, è dotata di un corpo in ghisa sferoidale con verniciatura per elettroforesi in grado di assicurar massima protezione all'ossidazione.

Caratteristiche principali

Esecuzione in linea Consente pressioni differenziali di esercizio elevate senza generare rumore. **Molla pneumatica**Permette di fissare il set-point tra 0 e 16 bar.

Caratteristiche tecniche

Applicazioni:

Impianti di riscaldamento e raffrescamento.

Funzioni:

Valvola di by-pass differenziale in linea con molla pneumatica.

Apertura all'aumentare della pressione in ingresso.

Dimensioni:

DN 15-125

Pressione nominale:

PN 25 o PN 16 (DN 100-125)

Pressione differenziale max. (ΔpV):

1 600 kPa = 16 bar

Campo di taratura:

0-16 bar

Temperatura:

Temperatura massima di esercizio: 100°C Temperatura minima di esercizio: -10°C

Fluido

Acqua e liquidi neutri, miscele di acquaglicole (0-57%).

Materiali:

Corpo valvola: Ghisa sferoidale

EN-GJS-400-15

Membrane e guarnizioni: NBR, EPDM

Trattamento superficiale:

Verniciatura per elettroforesi

Marcatura:

IMI TA, DN, PN, Kvs, materiale e freccia direzione flusso.

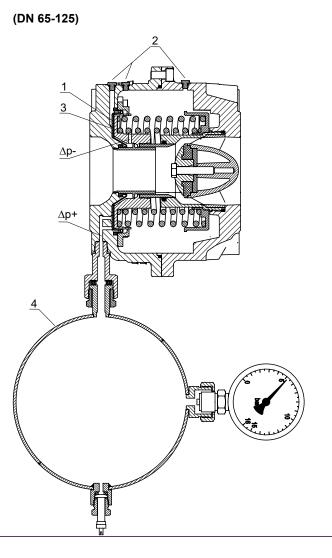
Collegamento:

DN 15-50: Filetto maschio a norma ISO 228.

DN 65-125: Flange a norma EN-1092-2, tipo 21.

Funzioni operative

La pressione in ingresso agisce attraverso un tubo capillare $(\Delta p$ -) sul lato esterno della membrana (1) in congiunzione con la forza della molla (3) aprendo la valvola.


La pressione dovuta al gas compresso contenuto nel vaso d'espansione (4) agisce attraverso un altro tubo capillare ($\Delta p+$) sul lato interno della membrana, chiudendo la valvola. Fintanto che le forze che agiscono sulla membrana sono in equilibrio, la sede della valvola rimane ferma. Se la pressione in ingresso aumenta, la valvola apre finché non si raggiunge un nuovo equilibrio.

Nello sfortunato caso in cui la membrana si dovesse rompere, la pressione su entrambi i lati di quest'ultima sarebbe la stessa e la molla di sicurezza aprirebbe completamente la valvola.

La forza della molla corrisponde ad una pressione differenziale sulla membrana pari a 20 kPa.

- 1. Membrana
- 2. Viti di sfiato
- 3. Molla
- 4. Vaso di pressione

Δp-,tubo di impulso interno Δp+,tubo di impulso al recipiente a pressione

Dimensionamento della valvola

Per evitare rumori la valvola va dimensionata in base alla velocità di flusso. Al fine di evitare rumorosità eccessive, si consiglia di non superare i 2 m/s in applicazioni residenziali e 3 m/s in quelle industriali.

La perdita di carico della valvola è da calcolare con la seguente formula:

$$\Delta p = \left(\frac{q}{100 \text{ x Kvs}}\right)^2 \text{ [kPa, I/h]}$$

Flow (q) in m³/h corresponding to velocity 1,0 m/s in pipe

DN	15	20	25	32	40	50	65	80	100	125	150	200	250
q [m³/h]	0,70	1,28	2,06	3,61	4,81	7,50	13,9	19,2	28,6	44,2	63,6	121	183

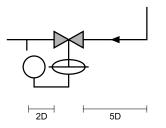
Se la velocità del flusso è troppo elevata per la dimensione della valvola selezionata (DN), è necessario selezionare il DN successivo più grande. Se ciò non bastasse è possibile installare due valvole in parallelo.

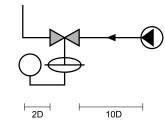
Installazione

La direzione del flusso è indicata da una freccia riportata sulla targa identificativa della valvola. La posizione d'installazione raccomandata è orizzontale, con le viti di sfiato (2) in alto.

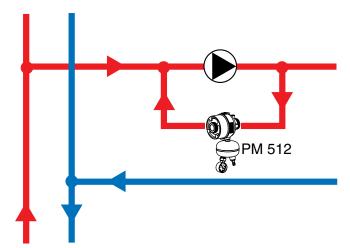
Si sconsiglia l'installazione di un filtro a monte della valvola di by-pass differenziale, poiché potrebbe ridurre o impedire il flusso. È importante assicurarsi che la temperatura e la pressione di lavoro non superino i valori raccomandati.

Prima di installare la valvola, verificare la lunghezza d'installazione di quest'ultima e le distanze tra gli attacchi sulle tubazioni. Collegare innanzitutto i raccordi (a saldare o filettati) alla tubazione, procedendo poi con la pulizia delle saldature se necessario. Si può quindi installare la valvola di by-pass differenziale. Nel caso si utilizzino raccordi flangiati, verificare il passo ed il diametro dei fori per i bulloni.


Quando le tubazioni e la valvola sono riempiti d'acqua e la pressione statica è stabilizzata, sfiatare correttamente la valvola utilizzando le viti di sfiato.


Per il corretto funzionamento della valvola è necessario quanto segue:

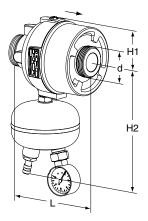
- 1. Installare la valvola nella direzione del flusso corretta (la freccia della direzione del flusso è contrassegnata sulla targhetta identificativa).
- 2. Installare la valvola con la posizione delle viti di sfiato (2) nel punto più alto. (Il recipiente a pressione deve essere in una posizione tale che la pressione possa essere letta nel manometro sul recipiente a pressione). È essenziale uno sfiato completo.
- 3. Controllare la velocità del flusso attraverso la valvola.


Raccordi per tubazioni

Se possibile evitate d'installare rubinetti o pompe immediatamente a monte della valvola.

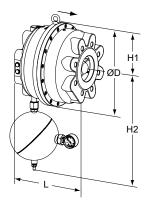
Esempi applicativi

Taratura


Caricare il vaso d'espansione con aria compressa o (meglio) azoto.

La pressione del vaso d'espansione dev'essere di 20 kPa più elevata rispetto alla somma della pressione statica (pst) e della pressione differenziale di apertura del by-pass (Dp).

La pressione di controllo della PM 512 può essere misurata ponendo un manometro sulla tubazione oppure mediante il manometro sul vaso d'espansione.



Articolo

DN 15-50 Filetto maschio – Attacchi aggiuntivi opzionali.
Filetto maschio a norma ISO 228.

DN	d	L	H1	H2	Kvs	Kg	EAN	Codice art.
PN 25								
15/20	G1	106	45	143	4	1,0	3831112505131	52 766-120
25/32	G1 1/4	125	55	161	12	1,7	3831112505148	52 766-125
40/50	G2	131	75	198	30	4,4	3831112505155	52 766-140

DN 65-125 Flange – Non necessitano di attacchi opzionali.
Flange a norma EN-1092-2, tipo 21.

DN	D	L	H1	H2	Kvs	Kg	EAN	Codice art.
PN 25	PN 25 (Le DN65 e DN80 sono compatibili anche con flange PN16)							
65	200	160	100	390	60	14	3831112500242	52 766-165
80	200	160	100	390	60	14	3831112504110	52 766-180
100	320	254	160	430	150	60	3831112525818	52 766-190
125	320	254	160	430	150	60	3831112504523	52 766-191
PN 16								
100	320	254	160	430	150	60	3831112505704	52 766-390
125	320	254	160	430	150	60	3831112505711	52 766-391

Kvs = m^3/h con una pressione differenziale di 1 bar e valvola completamente aperta. \rightarrow = Direzione di flusso

Attacchi

Raccordo con filetto femmina

Filetto a norma ISO 228. Dado ruotabile.

d1	d2	L1*	EAN	Codice art.
G1	G1/2	26	3831112501027	52 759-015
G1	G3/4	32	3831112501034	52 759-020
G1 1/4	G1	47	3831112501041	52 759-025
G1 1/4	G1 1/4	52	3831112501058	52 759-032
G2	G1 1/2	52	3831112503489	52 759-040
G2	G2	64.5	3831112503205	52 759-050

Raccordo con filetto femmina Rc

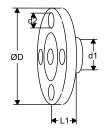
Filetto a norma ISO 7-1. Dado ruotabile.

d1	d2	L1*	EAN	Codice art.
G1	Rc1/2	26	3831112527454	52 751-301
G1	Rc3/4	32	3831112527461	52 751-302
G1 1/4	Rc1	47	3831112527478	52 751-303
G1 1/4	Rc1 1/4	52	3831112527485	52 751-304
G2	Rc1 1/2	52	3831112527492	52 751-305
G2	Rc2	64,5	3831112527508	52 751-306

Raccordo con filetto maschio

Filetto a norma ISO 7.

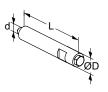
Dado ruotabile.


d1	d2	L1*	EAN	Codice art.
G1	R1/2	34	3831112500983	52 759-115
G1	R3/4	40	3831112500990	52 759-120
G1 1/4	R1	40	3831112501003	52 759-125
G1 1/4	R1 1/4	45	3831112501010	52 759-132
G2	R1 1/2	45	3831112503342	52 759-140
G2	R2	50	3831112503472	52 759-150

Attacco saldato

Dado ruotabile

d1	D	L1*	EAN	Codice art.
G1	20,8	37	3831112500945	52 759-315
G1	26,3	42	3831112500952	52 759-320
G1 1/4	33,2	47	3831112500969	52 759-325
G1 1/4	40,9	47	3831112500976	52 759-332
G2	48,0	47	3831112501140	52 759-340
G2	60,0	52	3831112501294	52 759-350


Attacco flangiato

Flange secondo EN-1092-2:1997, tipo 16.

d1	d2	D	L1*	EAN	Codice art.
G1	M12	95	10	3831112501065	52 759-515
G1	M12	105	20	3831112501072	52 759-520
G1 1/4	M12	115	5	3831112504318	52 759-525
G1 1/4	M16	140	15	3831112501096	52 759-532
G2	M16	150	5	3831112504325	52 759-540
G2	M16	165	20	3831112501317	52 759-550

*) Lunghezza del raccordo (dall'asse di tenuta alla fine del raccordo)

Accessori

Prolunga per sfiato

Utilizzabile in presenza dell'isolamento. Acciaio inox/EPDM/Ottone

d	D	L	EAN	Codice art.
M6	12	70	3831112531727	52 759-220

Vite di sfiato

Ottone/EPDM

d	EAN	Codice art.
M6	3831112527980	52 759-211

