

Zeparo G-Force

Valvole di sfogo rapido e separatori

Separatori di microbolle, impurità e magnetite con tecnologia ciclonica

Zeparo G-Force

Una gamma completa di prodotti per la separazione di microbolle, fango e magnetite negli impianti idronici di riscaldamento e raffrescamento. Le svariate possibilità di applicazione e la struttura modulare ne fanno prodotti unici. Grazie all'innovativa tecnologia a ciclonica si distinguono per l'elevata efficienza.

Caratteristiche principali

Elevata efficienza di separazione, indipendentemente dalle dimensioni

L'efficienza del separatore migliora all'aumentare della velocità del flusso. La perdita di carico rimane stabile durante il funzionamento indipendentemente dalla quantità di sporco raccolto. Protezione ancora maggiore per portate elevate, ad esempio, negli impianti di raffrescamento. Indicato per impianti di riscaldamento e raffrescamento.

> Pulizia e protezione per gli impianti
Protegge i componenti critici
dell'impianto – caldaie, pompe, valvole,
contabilizzatori e unità frigo - da
malfunzionamenti e guasti dovuti alla
presenza di fanghi e impurità. Nessun
rischio di ostruzione e intasamento:
le impurità raccolte possono essere
facilmente e rapidamente eliminate
grazie alla valvola di scarico. Riduce
la manutenzione necessaria sui
componenti per tutta la durata
dell'impianto, con conseguente

Coppella isolante accessoria con magneti

In grado di elevare ulteriormente l'efficienza di separazione di fanghi e magnetite (ossido di ferro di colorazione nera) costituita da particelle magnetiche di finissima granulometria. Grande facilità di installazione e di utilizzo.

> Separazione dei gas

A causa dell'effetto ciclonico, la pressione nel centro del ciclone è inferiore di quella d'impianto, permettendo ad una maggior quantità di bolle d'aria di essere separate, rispetto ai separatori tradizionali. L'aria che si concentra nel centro forma bolle di dimensione maggiore, che risalgono verso la parte superiore del G-Force dove c'è un flusso inferiore. Questa funzione richiede una valvola di sfogo automatico accessoria denominata 7 LTX

Caratteristiche tecniche

Applicazioni:

Sistemi di riscaldamento e di raffrescamento.

riduzione dei costi.

Fluido:

Sistema atossico e non aggressivo. Additivo antigelo fino al 50%.

Pressione:

Pressione max. ammissibile, PS: 16 bar e PN 25 (vedi articoli) Pressione min. ammissibile, PSmin: 0 bar

Temperatura:

Massima temperatura ammissibile, TS:

- PN16: 110 °C - PN25: 180 °C

Minima temperatura ammissibile, TSmin: -10 °C

Materiali:

Acciaio. Colore berillio.

Marcatura:

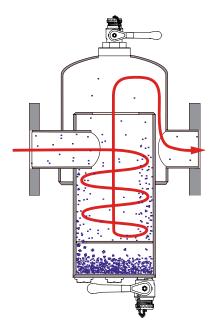
Corpo: e freccia con direzione di flusso. Etichetta con indicati DN, PN, TS e TSmin.

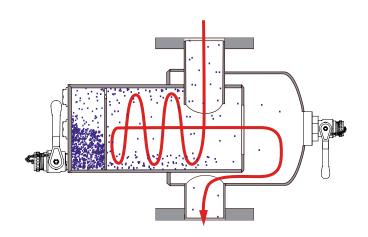
Collegamento:

Flange a norma EN-1092-1. Raccordo a saldare.

Trasporto e stoccaggio:

in luoghi asciutti.

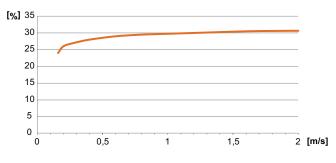

Approvazioni:


Costruito a norma PED 2014/68/EU.

Principio di separazione

Principio Ciclonico

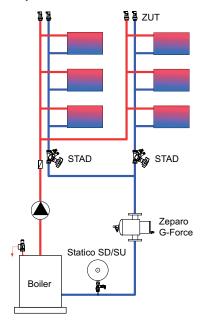
- Lo Zeparo G-Force si basa su una serie di principi di funzionamento, in grado di garantire un'elevata efficienza di separazione:
- Forza centrifuga il ciclone crea una rotazione interna allo Zeparo che si traduce in una forza aggiuntiva sulle particelle di fango. La combinazione della forza gravitazionale e cetrifuga si traduce in un'elevata efficienza di separazione.
- Comparata alla componente gravitazionale, la forza centrifuga è significativamente elevata, per via delle velocità di rotazione interne al separatore.
- La differenza di densità tra l'acqua e le particelle di fango (quest'ultime dotate di densità maggiore) spingono le medesime particelle verso le pareti esterne dello Zeparo.
- Flusso discendente: il movimento verso il basso generatosi all'interno dello Zeparo guida le particelle di fango verso il fondo ed infine all'interno della camera di raccolta, per essere poi eliminate aprendo lo scarico.
- Con l'aggiunta del magnete ZGM l'efficienza di separazione della magnetite aumenta significativamente.

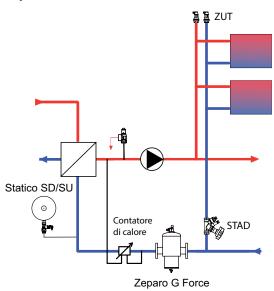


Il principio ciclonico funziona indipendentemente dall'orientamento. Pertanto il separatore può essere installato in orizzontale, in verticale o in qualsiasi altra posizione.

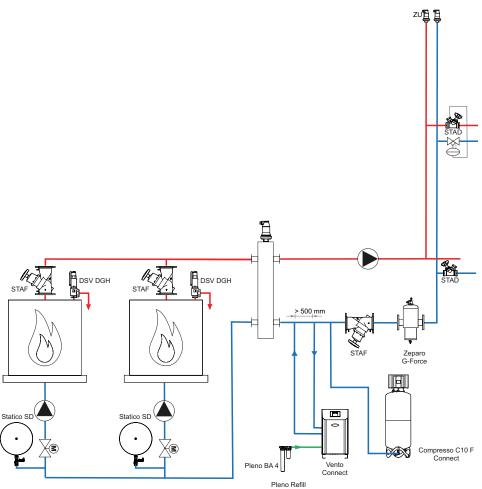
Efficienza di separazione

Curva caratteristica


Efficienza

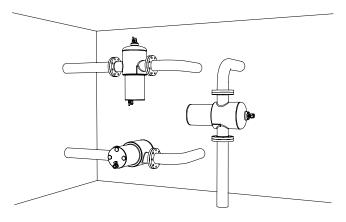

Velocità

Esempi applicativi


Impianti con caldaia

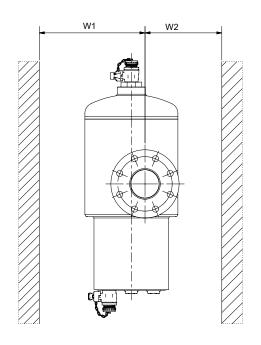
Impianti con scambiatore di calore

Impianti con caldaia - PN25



La posizione ideale per l'installazione del separatore di impurità Zeparo G-Force è sulla tubazione di ritorno, a monte del generatore di calore o in generale dell'unità da proteggere.

Non ci sono distanze minime richieste da curve, o altre perturbazioni, a monte o a valle dello Zeparo G-Force.



Installazione

Distanza dai muri (tutte le versioni)

Modello	W1	W2	Con iso	lamento	
			Wi1	Wi2	
ZG 65	150	100	200	140	
ZG 80	185	105	235	170	
ZG 100	185	115	235	170	
ZG 125	275	150	335	210	
ZG 150	275	150	335	210	
ZG 200	405	225	470	290	
ZG 250	515	315	580	380	
ZG 300	515	315	580	380	

5

Volume e portata

DN	VN	qN	qN_{max}
	[1]	[m³/h]	qN _{max} [m³/h]
65	12	10	40
80	25	18	56
100	28	37	95
125	71	68	148
150	78	100	216
200	239	200	375
200 250 300	583	345	575
300	624	540	815

VN = Volume nominale

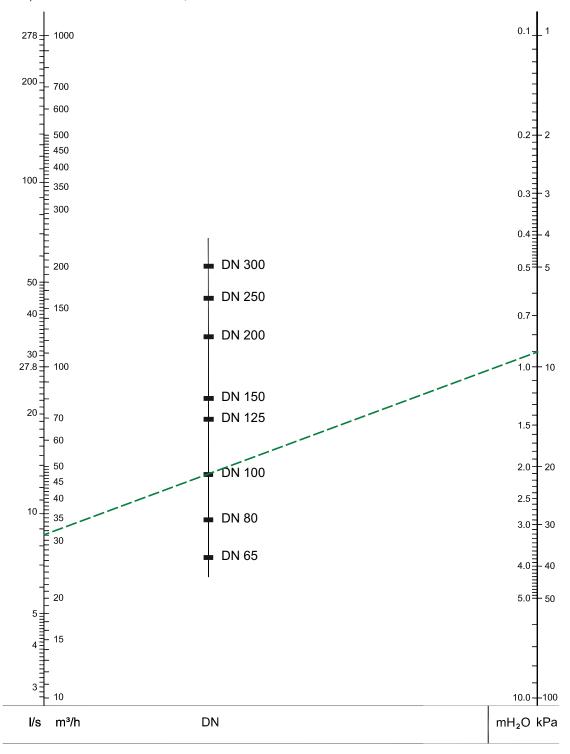
qN = Portata / Portata nominale

 qN_{max} = Massima portata

Pressione minima d'impianto

Pressione d'impianto

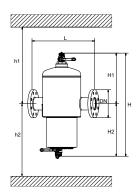
Velocità


Come evidenziato dal grafico soprastante, ad una velocità di flusso di 2 m/s una pressione statica+dinamica minima di 1.7 bar dovrà essere garantita nel punto di ingresso del G-Force, al fine di evitare fenomeni di cavitazione.

Selezione rapida

Riscaldamento

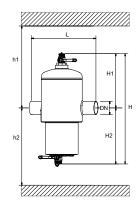
Esempio:


Impianto di riscaldamento con portata 31 m³/h e diametro della tubazione principale DN 100. Partendo dal valore sulle ascisse di 31 m³/h tracciare una linea che intersechi la curva relativa al diametro richiesto, ovvero DN 100, leggendo infine il corrispondente valore della perdita di carico sulle ordinate, 9 kPa.

La portata non dovrà superare la portata massima indicata per relativo diametro. Per un calcolo preciso utilizzare il software HySelect.

Articolo

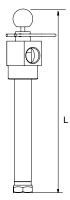
Flangiata


PN16 Installazione orizzontale, verticale e parallela al pavimento.

Modello	S [DN]	Н	H1	H2	h1	h2	L	q _{nom} [m³/h]	q _{max} [m³/h]	m [kg]	EAN	Codice art.
ZG 65	65	815	420	395	685	645	350	10	40	23	7640161631489	303041-11000
ZG 80	80	900	445	455	710	705	470	18	56	37	7640161631496	303041-11100
ZG 100	100	960	445	515	710	765	475	37	95	40	7640161631502	303041-11200
ZG 125	125	1180	560	620	935	870	635	68	148	108	7640161631519	303041-11300
ZG 150	150	1250	560	690	935	940	635	100	216	118	7640161631526	303041-11400
ZG 200	200	1470	580	890	1065	1140	900	200	375	238	7640161631533	303041-11500
ZG 250	250	1705	630	1075	1115	1325	1100	345	575	443	7640161631540	303041-11600
ZG 300	300	1855	655	1200	1140	1450	1100	540	815	490	7640161631557	303041-11700

PN25Installazione orizzontale, verticale e parallela al pavimento per applicazioni con elevate temperature/pressioni.

Modello	S [DN]	Н	H1	H2	h1	h2	L	q _{nom} [m³/h]	q _{max} [m³/h]	m [kg]	EAN	Codice art.
ZG 65	65	815	435	410	700	660	350	10	40	24,5	7640161632400	303041-31000
ZG 80	80	900	460	470	725	720	470	18	56	43	7640161632417	303041-31100
ZG 100	100	960	460	530	725	780	475	37	95	46	7640161632424	303041-31200
ZG 125	125	1180	575	635	950	885	635	68	148	130	7640161632431	303041-31300
ZG 150	150	1250	575	705	950	955	635	100	216	142	7640161632448	303041-31400
ZG 200	200	1470	595	905	1080	1155	900	200	375	355	7640161632455	303041-31500
ZG 250	250	1705	640	1065	1125	1315	1100	345	575	640	7640161632462	303041-31600
ZG 300	300	1855	665	1190	1150	1440	1100	540	815	715	7640161632479	303041-31700


Raccordo a saldare

Installazione orizzontale, verticale e parallela al pavimento.

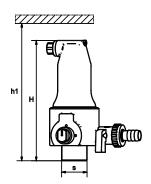
PN 16

Modello	S [DN]	Н	H1	H2	h1	h2	L	q _{nom} [m³/h]	q _{max} [m³/h]	m [kg]	EAN	Codice art.
ZG 65 W	65	815	420	395	685	645	340	10	40	19	7640161631564	303041-21000
ZG 80 W	80	900	445	455	710	705	455	18	56	30	7640161631571	303041-21100
ZG 100 W	100	960	445	515	710	765	460	37	95	31	7640161631588	303041-21200
ZG 125 W	125	1180	560	620	935	870	615	68	148	97	7640161631595	303041-21300
ZG 150 W	150	1250	560	690	935	940	615	100	216	102	7640161631601	303041-21400
ZG 200 W	200	1470	580	890	1065	1140	880	200	375	220	7640161631618	303041-21500
ZG 250 W	250	1705	630	1075	1115	1325	1080	345	575	408	7640161631625	303041-21600
ZG 300 W	300	1855	655	1200	1140	1450	1080	540	815	446	7640161631632	303041-21700

Accessori

Zeparo G-Force Magnet ZGM

Guaina magnetica. Magnete per Zeparo G-Force.


Raccordo a T con asta magnetica e boccola ad immersione. Per incrementare trattenimento della magnetite.

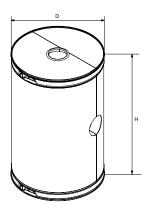
Sistemi di riscaldamento, solari e di raffrescamento.

Additivo antigelo fino al 50%.

Modello	PS	TS	m	L	EAN	Codice art.
	[bar]	[°C]	[kg]			
ZGM 65-100	16	110	3,1	261	7640161632301	303051-11000
ZGM 125-150	16	110	3,6	371	7640161632318	303051-11300
ZGM 200-300	16	110	4,0	481	7640161634794	303051-11500

Guaine magnetiche ZGM per PS > 16 bar e/o TS > 100°C disponibili su richiesta.

Valvola di sfogo automatico, modello Top


Zeparo ZUTX eXtra - con possibilità di chiusura

Filettatura esterna. Montaggio in verticale.

Modello	Н	h1	m [kg]	S	dpu [bar]	EAN	Codice art.
ZUTX 25	159	184	1,3	R1	10	7640148632485	789 1325

dpu = Campo di pressione di lavoro

Quando lo ZUT è installato sullo Zeparo G-Force la pressione nominale si riduce a PN 10.

Zeparo ZGI

Isolamento per Zeparo G-Force.

Sistemi di riscaldamento.

Lana di roccia con mantello in lamiera zincata a due elementi, montaggio semplice con bride a chiusura rapida.

Conducibilta termica ca. 0.040 W/mk.

Classe d'infiammabilitá A2 secondo DIN 4102.

Modello	S	SD*	Н	D	m	EAN	Codice art.
	DN				[kg]		
ZGI 65	65	40	520	305	2,8	7640161632325	303051-41000
ZGI 80	80	50	610	385	4,2	7640161632332	303051-41100
ZGI 100	100	50	670	385	4,6	7640161632349	303051-41200
ZGI 125	125	50	890	520	8,0	7640161632356	303051-41300
ZGI 150	150	50	960	520	8,7	7640161632363	303051-41400
ZGI 200	200	50	1130	720	22,0	7640161632370	303051-41500
ZGI 250	250	50	1350	930	38,0	7640161632387	303051-41600
ZGI 300	300	50	1470	930	41,5	7640161632394	303051-41700

*) Spessore d'isolazione

