

Climate Control

IMI Pneumatex

Transfero TV Connect

Sistemas de mantenimiento de presión con bomba y desgasificación por vacío con separación ciclónica integrada

Para sistemas de calefacción hasta 8 MW y de refrigeración de hasta 13 MW

Transfero TV Connect

Transfero TV Connect es un dispositivo de mantenimiento de presión de precisión para sistemas de calefacción y solares de hasta 8 MW y sistemas de agua fría de hasta 13 MW. Su uso está particularmente recomendado cuando se necesita un alto rendimiento, un diseño compacto y precisión. El nuevo panel de control **BrainCube Connect** permite un nivel de conectividad más avanzado, facilitando la comunicación con el sistema BMS y con otros BrainCube, así como la operación remota del sistema de presurización a través de la visualización en directo.

Características principales

2 en 1

 la única unidad de presurización con desgasificación al vacío ciclónica integrada

Desgasificación por vacío con separación ciclónica de alta eficiencia Al menos un 50% más eficiente que cualquier otro sistema de desgasificación por vacío.

Puesta en marcha, acceso remoto y localización de averías sencillas Calibración automática y conexiones estandarizadas integradas con nuestro servidor web IMI y el sistema de gestión de edificios.

Características técnicas - Unidad de control TecBox

Aplicaciones:

Instalaciones de calefacción, solares y de refrigeración.

Para instalaciones de acuerdo a EN 12828, SWKI HE301-01, instalaciones solares de acuerdo a EN 12976, ENV 12977 con protección in-situ contra excesos de temperatura en caso de desconexión eléctrica.

Medio:

Fluidos no tóxicos ni agresivos. Anticongelante a base de etilenglicol o propilenglicol, hasta un 50% de concentración.

Presión:

Mínima presión admisible: PSmin: -1 bar Max. presión admisible, PS: vea Artículos

Temperatura:

Temperatura máxima admisible, t_{smax} : 90°C Temperatura mínima admisible, t_{smin} : 0°C Temperatura máxima ambiente admisible, t_{Amax} : 40°C Temperatura mínima ambiente admisible, t_{Amin} : 5°C

Precisión:

Mantenimiento de presión de precisión ± 0,2 bar.

Tensión eléctrica:

1 x 230 V (-/+ 10 %), 50 Hz

Conexiones eléctricas:

1 toma de corriente (incluyendo conector de acoplamiento) para una tensión de alimentación de 230 V (fusibles externos en función de las necesidades de energía y las normas eléctricas locales)

4 salidas libres de potencial (N.A.) para indicación de alarma externa (230 V, máx. 2 A)

1 entrada/salida RS 485

1 puerto Ethernet RJ45

1 concentrador USB

Clase de aislamiento:

IP 54 según EN 60529

Conexiones mecánicas:

Sin1/Sin2: entrada del sistema G3/4" Sout: salida al sistema G3/4" Swm: entrada de agua de reposición G3/4" Sv: conexión del depósito G1 1/4"

Materiales:

Componentes metálicos en contacto con el medio: acero al carbono, fundición, acero inoxidable, AMETAL®, latón, bronce rojo.

Transporte y almacenaje:

En lugares secos y protegidos contra heladas.

Normativa:

Construido según MD 2006/42/EC, Annex II 1.A, EMC-D. 2014/30/EU

Características técnicas - Depósito de expansión

Aplicaciones:

Conjuntamente con el controlador TecBox. Ver Aplicaciones en la descripción técnica de TecBox.

Medio:

Fluidos no tóxicos ni agresivos.

Anticongelante a base de etilenglicol o propilenglicol, hasta un 50% de concentración.

Presión:

Mínima presión admisible: PSmin: 0 bar Máxima presión admisible: PS: 2 bar

Temperatura:

Temperatura máxima admisible en la vejiga, $t_{\rm Bmax}$: 70°C Temperatura mínima admisible en la vejiga, $t_{\rm Bmin}$: 5°C Para aplicaciones PED:

Temperatura máxima admisible, t_{smax} : 120°C Temperatura mínima admisible, t_{smin} : -10°C

Materiales:

Acero. Color berilio.

Vejiga airproof, hermética, de caucho butílico, de acuerdo a norma EN 13831.

Transporte y almacenaje:

En lugares secos y protegidos contra heladas.

Normativa:

Construido según PED 2014/68/EU.

Garantía:

Transfero TU, TU...E: 5 años de garantía en el depósito. Transfero TG, TG...E: 5 años de garantía en la vejiga airproof de butilo

Función, Equipamiento y Características

Unidad de control BrainCube Connect

- Control BrainCube Connect para un funcionamiento inteligente, totalmente automático y seguro del sistema.
 Auto-optimización con función de memoria.
- Resistente pantalla táctil TFT en color iluminada de 3,5". Interfaz basada en web con control remoto y vista en tiempo real. Estructura de menús funcional y fácil de usar, con instrucciones de puesta en marcha paso a paso y ayuda directa en ventanas emergentes. Representación de todos los parámetros relevantes y estado de funcionamiento en formato de texto y/o gráfico, multilingüe.
- Conexiones estandarizadas integradas (Ethernet, RS 485) con el servidor web IMI y el sistema de control de edificios (protocolo Modbus e IMI).
- Actualizaciones de software y registro de datos a través de conexión USB
- Registro de datos y análisis del sistema, memoria de mensajes cronológica con priorización, controlable remotamente con vista en tiempo real, autocomprobación automática periódica.
- Tapa metálica de alta calidad.
- Instalación variable junto al depósito principal.

Mantenimiento de la presión

- Funcionamiento de Dynaflex.
- Válvulas de aislamiento protegidas del sistema. Válvula de seguridad de 2 bar y válvula de bola para un drenaje rápido del depósito principal
- Mantenimiento de la presión de precisión ±0,2 bar

Desgasificación al vacío

- Capacidad de desgasificación de 1000l/h.
- Vacusplit: Programas de desgasificación para funcionamiento permanente con tecnología ciclónica.
 Extracción de gas del agua del sistema de casi el 100%.
 Modo Eco automático cuando no se detecta aire: menor consumo eléctrico de la bomba.
- Desgasificación Oxystop: Desgasificación directa del agua de reposición. Reducción significativa de oxígeno en el agua de reposición. Desgasifica de forma segura tanto el sistema como el agua de reposición en un depósito con separador ciclónico especialmente diseñado (dentro del Tecbox), con la ventaja de mantener una baja temperatura del depósito de expansión, sin necesidad de aislar el depósito. Protege el sistema contra la corrosión.

Agua de reposición

- Fillsafe: monitorización y control del agua de reposición con caudalímetro de contacto y electroválvula integrados.
- Conexión para dispositivos de agua de reposición Pleno P BA4R/AB5(R) opcionales para protección del agua de grifo según EN 1717.
- Monitorización y control Softsafe para un dispositivo opcional de tratamiento del agua de reposición opcional.

Depósito de expansión

- La vejiga puede purgarse de aire en su zona superior y los condensados por la parte inferior.
- Soporte de forma sinusoidal para montaje vertical (TU, TU...E). Pies de apoyo para montaje vertical (TG, TG...E).
- Recubrimiento interior anticorrosión para un desgaste de la vejiga mínimo (TG, TG...E).
- Airproof de butilo (TU, TU...E, TG, TG...E), intercambiable (TG, TG...E).
- Orificio endoscópico de inspección para revisiones internas (TU, TU...E). Dos bocas de registro para revisiones internas (TG, TG...E).

Cálculos

Mantenimiento de sistemas TAZ ≤ 100 °C

Cálculo según EN 12828, SWKI HE301-01 *).

Para todas las aplicaciones especiales como sistemas solares, sistemas con temperaturas altas, sistemas de refrigeración con temperaturas inferiores a 5°C, sistemas con temperaturas superiores a 100°C, utilice el software HySelect en contacto con nosotros.

Fórmulas Generales

Vs	Volumen de agua de la instalación	Calefacción	Vs = vs · Q	vs Q	Capacidad específica de agua, tabla 4. Potencia térmica instalada.
			Vs = Conocido		Cálculo del contenido de agua del sistema
		Refrigeración	Vs= Conocido		Cálculo del contenido de agua del sistema
Ve	Volumen de expansión	EN 12828	Ve = e · (Vs+Vhs)	e, ehs	Coeficiente de expansión para t _{max} , tabla 1
		Refrigeración	Ve = e · (Vs+Vhs)	e, ehs	Coeficiente de expansión para t _{max} , tabla 1 ⁷⁾
		SWKI HE301-01 Calefacción	$Ve = e \cdot Vs \cdot X^{(1)} + ehs \cdot Vhs$	e ehs	Coeficiente de expansión para (ts _{max} + tr)/2, tabla 1 Coeficiente de expansión para t _{max} , tabla 1
		SWKI HE301-01 Refrigeración	$Ve = e \cdot Vs \cdot X^{\scriptscriptstyle (1)} + ehs \cdot Vhs$	e, ehs	Coeficiente de expansión para t _{max} , tabla 1 ⁷⁾
Vwr	Volumen de reserva	EN 12828, Refrigeración	Vwr ≥ 0,005 · Vs ≥ 3 L		
		SWKI HE301-01	Vwr se incluye en Ve con el coeficiente X		
р0	Presión mínima 2)	EN 12828,	p0 = Hst/10 + 0,2 bar ≥ pz	Hst	Altura geométrica de instalación
	Valor límite inferior de	Refrigeración		pz	Presión mínima requerida del equipo para bombas o calderas
	presión	SWKI HE301-01	p0 = Hst/10 + 0,3 bar ≥ pz		
ра	Presión inicial Valor límite para una correcta presurización		pa ≥ p0 + 0,3 bar		
pe	Presion Final Valor límite superior			psvs dpsvs	Consigna valvula de seguridad del sistema Margen de error de la valvula al cerrar
	de presión	EN 12828	pe ≤ psvs - dpsv _c	dpsvs _c = dpsvs _c =	0,5 bar para psvs ≤ 5 bar ⁴⁾ 0,1 · psvs para psvs > 5 bar ⁴⁾
		Refrigeración	pe ≤ psvs - dpsv _c	dpsvs _c = dpsvs _c =	0,6 bar para psvs ≤ 3 bar ⁴⁾ 0,2 · psvs para psvs > 3 bar ⁴⁾
		SWKI HE301-01 Calefacción	pe ≤ psvs/1,15 y pe ≤ psvs - 0,3 bar		psvs ⁴⁾
		SWKI HE301-01 refrigeración, solar, bomba de calor	pe ≤ psvs/1,3 y pe ≤ psvs - 0,6 bar		psvs ⁴⁾
Trans	fero				
ре	Presión Final Valor límite superior de		pe = pa + 0,4		

ре	Presión Final Valor límite superior de presión		pe = pa + 0,4	
VN	Volumen nominal del vaso de expansión ⁵⁾	EN 12828, Refrigeración	VN ≥ (Ve + Vwr) · 1,1	
		SWKI HE301-01	VN ≥ (Ve + 2 ³)) · 1,1	
TecB	ox		Q = f(Hst)	>> Selección rápida Transfero

- 1) Calefacción, Refrigeración, Solares: Q ≤ 10 kW: X = 3 | 10 kW < Q ≤ 150 kW: X = (87-0,3 · Q)/28 | Q > 150 kW: X = 1,5 Sistemas de captación geotérmica: X = 2,5
- 2) La fórmula relativa a la presión mínima p0, se aplica cuando el vaso de expansión y mantenimiento de presión está situado en el lado de aspiración de la bomba de circulación. En el caso de estar situado en el lado de impulsión de la bomba, la presión mínima p0 debe ser incrementada en la presión de la bomba Δp.
- 4) Las válvulas de seguridad deben trabajar dentro de estos límites. Utilice únicamente válvulas de seguridad certificadas y con componentes probados de tipo H y DGH para sistemas de calefacción y tipo F y DGF para sistemas de refrigeración. Para instalaciones según SWKI HE301-01, sólo se deben utilizar válvulas de seguridad del tipo de homologación DGF y DGH.
- 5) Seleccione un recipiente que tenga un contenido nominal igual o superior.
- 7) Máx. temperatura de reposo del sistema, normalmente 40 ° C para aplicaciones de refrigeración y captación geotérmica con regeneración del suelo, 20 ° C para otras captaciones geotérmicas
- *) SWKI HE301-01: Válido para Suiza

Nuestro programa de cálculo HySelect está basado en una metodología de cálculo y en una base de datos avanzada. Los resultados diferirán de otros programas que usen tablas de datos diferentes.

Tabla 1: Coeficiente de expansión «e»

t (TAZ, ts	_{max} , tr, ts _{min}), °C	20	30	40	50	60	70	80	90	100	105	110
e Agua	= 0 °C	0,0016	0,0041	0,0077	0,0119	0,0169	0,0226	0,0288	0,0357	0,0433	0,0472	0,0513
e % peso	MEG*											
30 %	= -14,5 °C	0,0093	0,0129	0,0169	0,0224	0,0286	0,0352	0,0422	0,0497	0,0577	0,0620	0,0663
40 %	= -23,9 °C	0,0144	0,0189	0,0240	0,0300	0,0363	0,0432	0,0505	0,0582	0,0663	0,0706	0,0750
50 %	= -35,6 °C	0,0198	0,0251	0,0307	0,0370	0,0437	0,0507	0,0581	0,0660	0,0742	0,0786	0,0830
e % peso	MPG**											
30 %	= -12,9 °C	0,0151	0,0207	0,0267	0,0333	0,0401	0,0476	0,0554	0,0639	0,0727	0,0774	0,0823
40 %	= -20,9 °C	0,0211	0,0272	0,0338	0,0408	0,0481	0,0561	0,0644	0,0731	0,0826	0,0873	0,0924
50 %	= -33,2 °C	0,0288	0,0355	0,0425	0,0500	0,0577	0,0660	0,0747	0,0839	0,0935	0,0985	0,1036

Tabla 4: Volumen aprox. de agua «vs» *** en calefacciones centrales, por kilovatio de emisor instalado y según su temperatura

ts _{max} tr	°C	90 70	80 60	70 55	70 50	60 40	50 40	40 30	35 28
Radiadores de fundición	vs litros/kW	14,0	16,5	20,1	20,6	27,9	36,6	-	-
Radiadores de panel	vs litros/kW	9,0	10,1	12,1	11,9	15,1	20,1	-	-
Convectores	vs litros/kW	6,5	7,0	8,4	7,9	9,6	13,4	-	-
Aerotermos	vs litros/kW	5,8	6,1	7,2	6,6	7,6	10,8	-	-
Suelo radiante	vs litros/kW	10,3	11,4	13,3	13,1	15,8	20,3	29,1	37,8

^{*)} MEG = Mono-Etilen Glicol

Tabla 6: DNe indicativo de la tubería de expansión para los Transfero TV_*

	DNe	Hst [m]	DNd	Hst [m]	DNe	Hst [m]	DNd	Hst [m]	DNe	Hst [m]	DNd	Hst [m]
	L	ongitud máx	c. aprox. 5	m	Lo	ngitud máx	. aprox. 10) m	Longitud máx. aprox. 30 m			
TV_4.1	25	todas	25	todas	25	todas	25	todas	32	todas	32	todas
TV_4.1 H	32	todas	25	todas	32	todas	25	todas	40	todas	32	todas
TV_4.2 H	32	todas	25	todas	50 40	<13 ≥13	25	todas	50	todas	32	todas
TV_6.1	25	todas	25	todas	25	todas	25	todas	32	todas	32	todas
TV_6.1 H	32	todas	25	todas	40 32	<23 ≥23	25	todas	50 40	<26 ≥26	32	todas
TV_6.2 H	50 40	<18 ≥18	25	todas	50 40	<25 ≥25	25	todas	65 50	<22 ≥22	32	todas
TV_8.1	25	todas	25	todas	25	todas	25	todas	32	todas	32	todas
TV_8.1 H	32	todas	25	todas	40 32	<24 ≥24	25	todas	50 40	<28 ≥28	32	todas
TV_8.2 H	50 40	<27 ≥27	25	todas	50 40	<34 ≥34	25	todas	65 50	<30 ≥30	32	todas
TV_10.1	25	todas	25	todas	25	todas	25	todas	32	todas	32	todas
TV_10.1 H	40 32	<29 ≥29	25	todas	40 32	<40 ≥40	25	todas	50 40	<45 ≥45	32	todas
TV_10.2 H	50 40	<44 ≥44	25	todas	50 40	<52 ≥52	25	todas	65 50	<48 ≥48	32	todas
TV_14.1	25	todas	25	todas	25	todas	25	todas	32	todas	32	todas
TV_14.1 H	32	todas	25	todas	32	todas	25	todas	40 32	<80 ≥80	32	todas
TV_14.2 H	50 40	<61 ≥61	25	todas	50 40	<80 ≥80	25	todas	65 50	<70 ≥70	32	todas

^{*)}

Para que el dispositivo funcione correctamente, se deben mantener los valores DNe / DNd especificados.

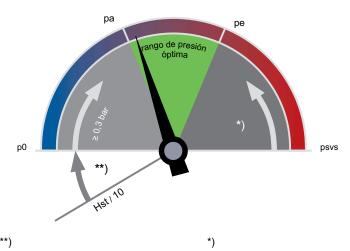
TV.1: una conexión para sistema de expansión DNe, otra conexión para desgasificación DNd

TV.1EH, TV.2EH para tr<5şC o tr>70şC: dos conexiones para expansión DNe, otra conexión para desgasificación DNd

TV.1EH, TV.2EH para 5şC < tr<70şC: una conexión para sistema de expansión DNe, otra conexión para desgasificación DNd

^{**)} MPG = Mono-Propilen Glicol

^{***)} Volumen de agua = generador de calor + tuberías + emisores de calor


Temperatura

ts _{max}	Temperatura máxima de la instalación Temperatura máxima para el cálculo del volumen de expansión. En calefacción es la máxima temperatura de funcionamiento de la instalación a la menor temperatura exterior esperada (temperatura estándar exterior de cálculo según EN 12828). En refrigeración es la máxima temperatura esperada bien durante el funcionamiento o bien durante una parada prolongada. En instalaciones solares es la máxima temperatura esperada sin producirse evaporación.
ts _{min}	Temperatura mínima de la instalación Temperatura mínima para el cálculo del volumen de expansión. La temperatura más baja de la instalación es igual al punto de congelación. Depende de la proporción de anticongelante añadido. Para agua sin aditivos ts _{min} = 0.
tr	Temperatura de retorno Temperatura de retorno de la instalación a la menor temperatura exterior esperada (temperatura estándar exterior de cálculo según EN 12828).
TAZ	Limitador de temperatura de seguridad Regulador de temperatura de seguridad (Según EN 12828) Equipamiento de seguridad para proteger a los generadores térmicos contra temperaturas inadmisibles. Si se produce un aumento de temperatura por encima del valor de referencia estos sistemas paran la producción de calor. Los limitadores producen un bloqueo con rearme manual, los reguladores tienen un rearme automático que desbloquea la producción de calor cuando la temperatura ha descendido. El valor de regulación según EN 12828 ≤ 110 °C.

Mantenimiento de presión

Transfero minimizan las variaciones de presión entre pa y pe.

Transfero ± 0,2 bar

EN 12828, Solares, Refrigeración: ≥ 0,2 bar

EN 12828: ≥ psvs · 0,1 ≥ 0,5 bar

Solares, Refrigeración: $\geq psvs \cdot 0.2 \geq 0.6$ bar

p0 Presión mínima

Transferd

p0 y los puntos de conmutación son calculados por la regulación BrainCube.

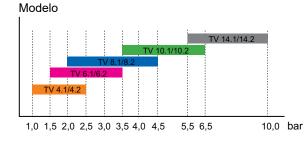
pa Presión inicial

Transfero

Si la presión del Sistema es< pa, la bomba arranca.

pa = p0 + 0.3

pe Presión final


Transfero

Si la presión del Sistema es > pe, la válvula de alivio abre.

pe = pa + 0.4

Selección rápida

Rango de trabajo - dpu

dpu

		TV_4	TV_6	TV_8	TV_10	TV_14
dpu min	bar	1	1,5	2	3,5	5,5
dpu max	bar	2,5	3,5	4,5	6,5	10

Selección rápida

Instalaciones de calefacción TAZ ≤ 100 °C, sin adición de anticongelantes, EN 12828.

Para un cálculo exacto usar el software HySelect.

			ТесВох					ТесВох					ТесВох			D	epósito	princip	al
			1 bomba	a			1 bom	ba, alto	caudal			2 bomb	as *, alto	caudal		Radiad fund	ores de ición	Radiad pa	ores de nel
	TV 4.1 E	TV 6.1 E	TV 8.1 E	TV 10.1 E	TV 14.1 E	TV 4.1 EH	TV 6.1 EH	TV 8.1 EH	TV 10.1 EH	TV 14.1 EH	TV 4.2 EH	TV 6.2 EH	TV 8.2 EH	ТV 10.2 ЕН	TV 14.2 EH	02 06	70 50	02 06	70 50
		Altura es	stática l		*	-	Altura es	stática l		*		Altura e:	stática F	lst [m] *	*				
Q [kW]			min-max	(min-max	(min-max	[Volum	en nom	inal VN	[litros]
≤ 300	3-18	7-28	12-38	27-58	47-93	2-18	7-28	12-38	27-58	47-93	2-18	7-28	12-38	27-58	47-92	200	200	200	200
400	3-18	7-28	12-38	27-58	47-93	2-18	7-28	12-38	27-58	47-93	2-18	7-28	12-38	27-58	47-92	300	300	200	200
500	3-18	7-28	12-38	27-58	47-93	2-18	7-28	12-38	27-58	47-93	2-18	7-28	12-38	27-58	47-92	300	300	200	200
600	3-18	7-28	12-38	27-58	47-93	2-18	7-28	12-38	27-58	47-93	2-18	7-28	12-38	27-58	47-93	400	400	300	300
700	3-18	7-28	12-38	27-58	47-93	2-18	7-28	12-38	27-58	47-93	2-18	7-28	12-38	27-58	47-93	500	500	300	300
800	3-18	7-28	12-38	27-58	47-93	2-18	7-28	12-38	27-58	47-93	2-18	7-28	12-38	27-58	47-93	500	500	400	300
900	3-18	7-28	12-38	27-58	47-93	2-18	7-28	12-38	27-58	47-93	2-18	7-28	12-38	27-58	47-93	600	600	400	400
1000	3-18	7-28	12-38	27-58	47-93	2-18	7-28	12-38	27-58	47-93	2-18	7-28	12-38	27-58	47-93	600	600	400	400
1100	3-18	7-28	12-38	27-58	47-93	2-18	7-28	12-38	27-58	47-93	2-18	7-28	12-38	27-58	47-93	800	800	500	500
1200	5-18	7-28	12-38	27-58	47-93	2-18	7-28	12-38	27-58	47-93	2-18	7-28	12-38	27-58	47-93	800	800	500	500
1300	7-18	7-28	12-38	27-58	47-93	2-18	7-28	12-38	27-58	47-93	2-18	7-28	12-38	27-58	47-93	800	800	500	500
1400	10-18	10-28	12-38	27-58	47-93	2-18	7-28	12-38	27-58	47-93	2-18	7-28	12-38	27-58	47-93	1000	1000	600	600
1500	12-18	12-28	12-38	27-58	47-93	2-18	7-28	12-38	27-58	47-93	2-18	7-28	12-38	27-58	47-93	1000	1000	600	600
1600	15-18	15-28	15-38	27-58	47-93	2-18	7-28	12-38	27-58	47-93	2-18	7-28	12-38	27-58	47-93	1000	1000	800	800
1700		18-28	18-38	27-58	47-93	2-18	7-28	12-38	27-58	47-93	2-18	7-28	12-38	27-58	47-93	1500	1500	800	800
1800		21-28	21-38			2-18	7-28	12-38	27-58	47-93	2-18	7-28	12-38	27-58	47-93	1500	1500	800	800
1900		24-28	24-38			2-18	7-28	12-38	27-58	47-93	2-18	7-28	12-38	27-58	47-93	1500	1500	800	800
2000			28-38 32-38			2-18 2-18	7-28 7-28	12-38 12-38	27-58	47-93 47-93	2-18 2-18	7-28 7-28	12-38 12-38	27-58	47-93	1500	1500 1500	800 1000	800 1000
2100						2-18	7-28	12-38	27-58 27-58	47-93	2-18	7-28		27-58	47-93 47-93	1500			1000
2500			35-38			2-16	7-28	12-36	27-58	47-93	2-18	7-28	12-38 12-38	27-58 27-58	47-93	1500 1500	1500 1500	1000	1000
3000						2-18	7-28	12-38	27-58	47-82	2-18	7-28	12-38	27-58	47-93	2000	2000	1500	1500
3500						2-15	7-26	12-35	27-52	47-62	2-18	7-28	12-38	27-58	47-93	3000	3000	1500	1500
4000						2-10	7-21	12-29	27-46	47-02	2-18	7-28	12-38	27-58	47-93	3000	3000	2000	2000
4500						2-10	7-14	12-23	27-37		2-18	7-28	12-38	27-58	47-93	3000	3000	2000	2000
5000							<u> </u>	12-14	27-28		2-18	7-28	12-38	27-58	47-92	3000	3000	2000	2000
5500											2-15	7-27	12-36	27-55	47-83	4000	4000	3000	3000
6000											3-11	7-23	12-32	27-50	47-73	4000	4000	3000	3000
6500											4-7	7-19	12-28	27-45	47-61	4000	4000	3000	3000
7000												8-15	12-23	27-40	47-48	5000	5000	3000	3000
7500												8-10	12-18	27-34		5000	5000	3000	3000
8000														27-28		5000	5000	4000	4000

^{*)} Altura para una sola bomba, duplicidad completa en la zona encuadrada.
**) El valor disminuye con:

TAZ = 105 °C en 2 m TAZ = 110 °C en 4 m

Ejemplo

Q = 1300 kWRadiadores de panel 90 | 70 °C TAZ = 105 °C Hst = 35 mpsv = 6,5 bar

Selección: TecBox TV 8.1 E Depósito principal TU 500

Consigna de ajuste en el BrainCube: Hst = 35 mTAZ = 105 °C

Verificación psv: para TAZ = 105 °C

EN 12828 psv: $(35/10 + 0.9 + 0.2) \cdot 1.11 = 5.11 \le 6.5$ o.k.

Verificación Hst: para TAZ = 105 °C

Hst: 38 - 2 = 36 ≥ 35

Transfero

= TecBox + depósito principal + depósito Auxiliar (opcional)

Depósitos secundarios

El volumen nominal puede ser repartido en varios depósitos del mismo tamaño.

Valores de ajuste

para TAZ, Hst y psv en el menú «Parámetro» del BrainCube.

			TAZ = 100 °C	TAZ = 105 °C	TAZ = 110 °C
EN 12828	Verificación psv:	para psv ≤ 5 bar	psv ≥ 0,1 · Hst + 1,4	psv ≥ 0,1 · Hst + 1,6	psv ≥ 0,1 · Hst + 1,8
		para psv > 5 bar	psv ≥ (0,1 · Hst + 0,9) · 1,11	psv ≥ (0,1 · Hst + 1,1) · 1,11	psv ≥ (0,1 · Hst + 1,3) · 1,11

El BrainCube determina automáticamente los puntos de conmutación y de presión mínima p0.

Equipamiento

Tuberías de expansión

Transfero TV: tabla 6

Depósito de compensación

Se requiere usar un Statico SD50 para los modelos Transfero TV4, TV6 y TV8. Usen el SD80 para modelos TV10 y TV14 (psvs < 10 bar) y SU 140 para modelos TV14 (10bar < psvs ≤ 13bar).

Válvula de corte DLV

Para los vasos intermedios SD 50/80 y SU 140.

Pleno

Módulos de reposición de agua en combinación con Transfero TV Connect. Control y regulación por el BrainCube del Transfero. Las unidades de ablandamiento del agua conectadas deben tener un caudal mínimo de 1300 l/h para conexión directa. Instale un controlador de caudal si el sistema de tratamiento de agua precisa un valor limite inferior de caudal (se incopora en el Transfero un controlador de caudal de 240 l/h).

Pleno Refill

Módulos de ablandamiento y desmineralización de agua en combinación con Transfero TV Connect. El control se realiza a través del BrainCube del Transfero TecBox.

Depósito intermedio

Es necesario un depósito intermedio para temperaturas de retorno superiores a 70°C o inferiores a 5°C.

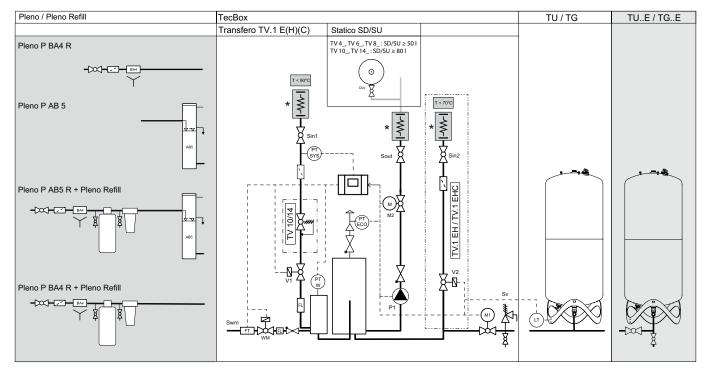
Zeparo

Purgador de aire Zeparo ZUT o ZUP en cada punto alto, para purgar durante el llenado y permitir la entrada de aire durante el vaciado. Separadores de lodos y magnetita en retorno de instalación, antes del generador térmico.

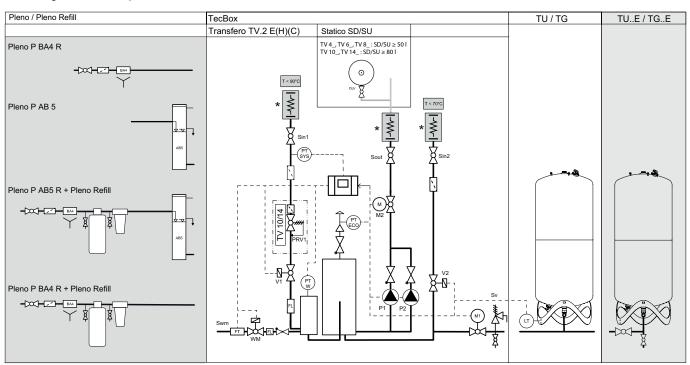
Otros accesorios, productos y datos técnicos:

Ficha de datos Pleno Refill, Zeparo y Accesorios.

Instalación



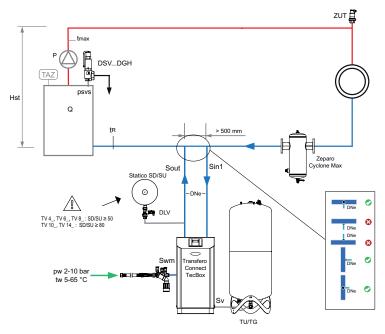
Esquema de principio


Transfero TV1 Connect

La zona gris describe opcionales

Transfero TV2 Connect

La zona gris describe opcionales

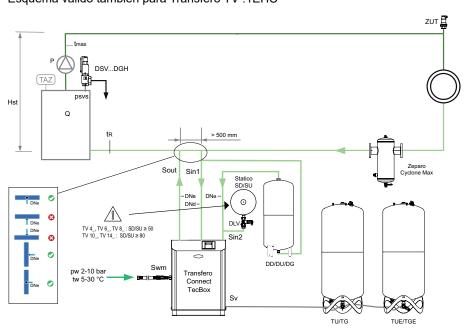

Ejemplo de aplicación

Transfero TV .1 E Connect

TecBox con 1 bomba, mantenimiento de presión con precisión de ± 0,2 bar, con con desgasificación al vacío ciclónica, Pleno P BA4R con rellenado de agua.

Para instalaciones de calefacción, temperatura de retorno tr ≤ 70°C

(puede requerir modificaciones en función de las normas locales)



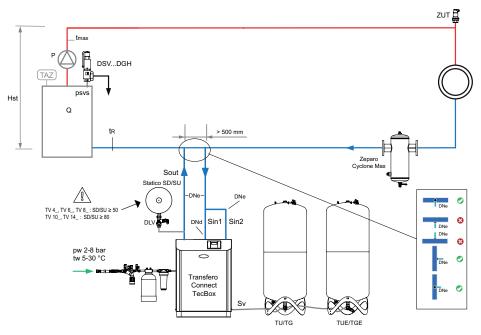
Transfero TV .2 EHC Connect

TecBox con 2 bomba, mantenimiento de presión con precisión de ± 0,2 bar con desgasificación al vacío ciclónica. Pleno P AB5 para agua de reposición.

Para instalaciones de refrigeración, temperatura de retorno 0°C < tr ≤ 5°C

(puede requerir modificaciones en función de las normas locales) Esquema válido tambien para Transfero TV .1EHC

Zeparo Cyclone Max separador instalado como separador de lodos Zeparo ZUT purgadores de aire para salida y entrada de aire durante el llenado y vaciado Otros accesorios, productos y datos técnicos: Ficha de datos Pleno Connect, Zeparo y Accesorios

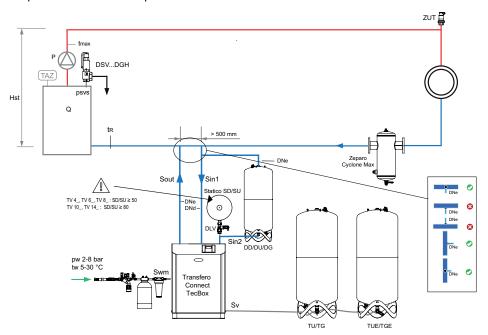


Transfero TV .2 EH Connect

TecBox con 2 bombas, mantenimiento de presión con precisión de ± 0.2 bar con desgasificación al vacío ciclónica incorporada y rellenado de agua externo Pleno P AB5 R y Pleno Refill para tratamiento del agua.

Para instalaciones de calefacción, temperatura de retorno tr ≤ 70°C

(puede requerir modificaciones en función de las normas locales) Esquema válido tambien para Transfero TV .1EH



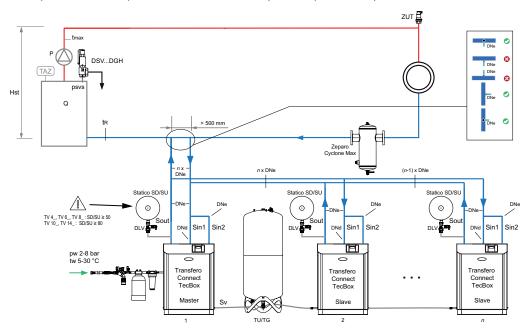
Transfero TV .2 EH Connect

TecBox con 2 bombas, mantenimiento de presión con precisión de ± 0.2 bar con desgasificación al vacío ciclónica incorporada y rellenado de agua externo Pleno P AB5 R y Pleno Refill para tratamiento del agua.

Para instalaciones de calefacción, temperatura de retorno 70°C < tr ≤ 90°C

(puede requerir modificaciones en función de las normas locales) Esquema válido tambien para Transfero TV .1EH

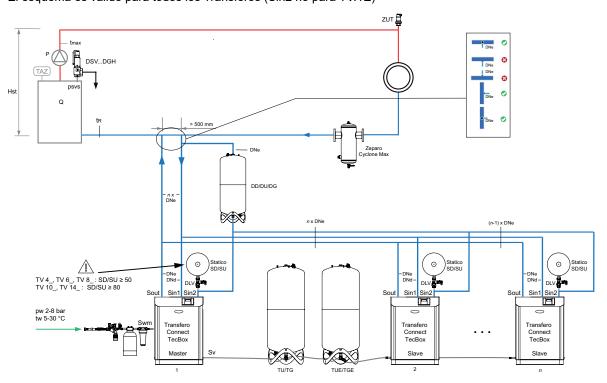
Zeparo Cyclone Max separador instalado como separador de lodos Zeparo ZUT purgadores de aire para salida y entrada de aire durante el llenado y vaciado Otros accesorios, productos y datos técnicos: Ficha de datos Pleno Connect, Zeparo y Accesorios


Control de presión maestro-esclavo (PC/PCR) para funcionamiento combinado con Transfero

TecBoxes para funcionamiento paralelo (control de presión maestro-esclavo (PC/PCR), mantenimiento de presión de precisión ± 0,2 bar con desgasificación por vacío por efecto ciclónico, Pleno P AB5 R para el rellenado de agua y Pleno Refill para el tratamiento del agua.

Ejemplo de funcionamiento combinado de control de presión maestro-esclavo (PC/PCR) con un solo vaso primario y múltiples TecBox en sistemas de calefacción, temperatura de retorno tr ≤ 70°C

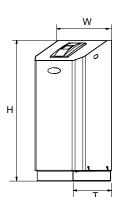
(Puede requerir cambios para cumplir con la legislación local)


El esquema es válido para todos los Transferos (Sin2 no para TV.1E)

Ejemplo de funcionamiento combinado de control de presión maestro-esclavo (PC/PCR) con dos vasos primarios y múltiples TecBox en sistemas de calefacción, temperatura de retorno 70 °C < tr ≤ 90°C

(Puede requerir cambios para cumplir con la legislación local)

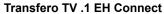
El esquema es válido para todos los Transferos (Sin2 no para TV.1E)


Zeparo Cyclone Max para la separación centralizada de lodos.

Zeparo ZUT para la purga automática durante el llenado y el vaciado.

Para más accesorios, detalles de productos y selección, consulte: Hojas de datos de Pleno Connect, Zeparo y accesorios

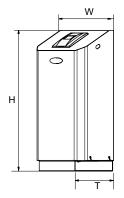
Unidad de control TecBox - Transfero Connect TV Calefacción



Transfero TV .1 E Connect

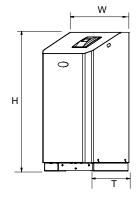
Mantenimiento de presión de precisión ± 0,2 bar. 1 bomba. 1 válvula de descarga y 2 válvulas motorizadas para desgasificación y presurización.

1 electroválvula y 1 caudalímetro para agua de reposición.


Modelo	В	Н	Т	m [kg]	Pel [kW]	dpu [bar]	SPL [dB(A)]	Núm Art
10 bar (PS)								
TV 4.1 E	500	920	530	42	0,75	1-2,5	~55*	811 1500
TV 6.1 E	500	920	530	44	1,1	1,5-3,5	~55*	811 1501
TV 8.1 E	500	920	530	45	1,4	2-4,5	~55*	811 1502
TV 10.1 E	500	1300	530	50	1,7	3,5-6,5	~60*	811 1503
13 bar (PS)								
TV 14.1 E	500	1300	530	69	1,7	5,5-10	~60*	811 1504

Mantenimiento de presión de precisión ± 0,2 bar. 1 bomba. 1 válvula de descarga y 2 válvulas motorizadas para desgasificación y presurización. 1 válvula de descarga para presurización con carga máxima.

1 electroválvula y 1 caudalímetro para agua de reposición.


Modelo	В	Н	Т	m [kg]	Pel [kW]	dpu [bar]	SPL [dB(A)]	Núm Art
10 bar (PS)								
TV 4.1 EH	500	920	530	43	0,75	1-2,5	~55*	811 1510
TV 6.1 EH	500	920	530	46	1,1	1,5-3,5	~55*	811 1511
TV 8.1 EH	500	920	530	47	1,4	2-4,5	~55*	811 1512
TV 10.1 EH	500	1300	530	52	1,7	3,5-6,5	~60*	811 1513
13 bar (PS)								
TV 14.1 EH	500	1300	530	72	1,7	5,5-10	~60*	811 1514

Transfero TV .2 EH Connect

Mantenimiento de presión de precisión ± 0,2 bar. 2 bombas. 1 válvula de descarga y 2 válvulas motorizadas para desgasificación y presurización. 1 válvula de descarga para presurización con carga máxima.

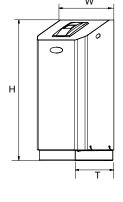
1 electroválvula y 1 caudalímetro para agua de reposición.

В	Н	Т	m [kg]	Pel [kW]	dpu [bar]	SPL [dB(A)]	Núm Art
680	920	530	54	1,5	1-2,5	~55*	811 1520
680	920	530	57	2,2	1,5-3,5	~55*	811 1521
680	920	530	60	2,8	2-4,5	~55*	811 1522
680	1300	530	70	3,4	3,5-6,5	~60*	811 1523
680	1300	530	97	3,4	5,5-10	~60*	811 1524
	680 680 680	680 920 680 920 680 920 680 1300	680 920 530 680 920 530 680 920 530 680 1300 530	[kg] 680 920 530 54 680 920 530 57 680 920 530 60 680 1300 530 70	[kg] [kW] 680 920 530 54 1,5 680 920 530 57 2,2 680 920 530 60 2,8 680 1300 530 70 3,4	[kg] [kW] [bar] 680 920 530 54 1,5 1-2,5 680 920 530 57 2,2 1,5-3,5 680 920 530 60 2,8 2-4,5 680 1300 530 70 3,4 3,5-6,5	[kg] [kW] [bar] [dB(A)] 680 920 530 54 1,5 1-2,5 ~55* 680 920 530 57 2,2 1,5-3,5 ~55* 680 920 530 60 2,8 2-4,5 ~55* 680 1300 530 70 3,4 3,5-6,5 ~60*

T = Profundidad del aparato. dpu = Rango de presiones de servicio

^{*)} Funcionamiento de la bomba

Unidad de control TecBox - Transfero Connect TV Refrigeración


Transfero TV .1 EC Connect

Mantenimiento de presión de precisión ± 0,2 bar. 1 bomba. 1 válvula de descarga y 2 válvulas motorizadas para desgasificación y presurización.

1 electroválvula y 1 caudalímetro para agua de reposición.

Aislamiento de refrigeración con protección del agua de condensación.

Modelo	В	Н	Т	m [kg]	Pel [kW]	dpu [bar]	SPL [dB(A)]	Núm Art
10 bar (PS)								
TV 4.1 EC	500	920	530	43	0,75	1-2,5	~55*	811 1530
TV 6.1 EC	500	920	530	45	1,1	1,5-3,5	~55*	811 1531
TV 8.1 EC	500	920	530	46	1,4	2-4,5	~55*	811 1532
TV 10.1 EC	500	1300	530	51	1,7	3,5-6,5	~60*	811 1533
13 bar (PS)								
TV 14.1 EC	500	1300	530	70	1,7	5,5-10	~60*	811 1534

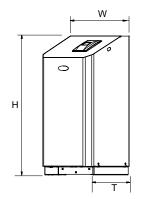
Transfero TV .1 EHC Connect

Mantenimiento de presión de precisión ± 0,2 bar. 1 bomba. 1 válvula de descarga y 2 válvulas motorizadas para desgasificación y presurización. 1 válvula de descarga para presurización con carga máxima.

1 electroválvula y 1 caudalímetro para agua de reposición.

Aislamiento de refrigeración con protección del agua de condensación.

		H	 	/V	-
Н					
_	<u> </u>		_		_
			-	Т	


Modelo	В	Н	Т	m [kg]	Pel [kW]	dpu [bar]	SPL [dB(A)]	Núm Art
10 bar (PS)								
TV 4.1 EHC	500	920	530	44	0,75	1-2,5	~55*	811 1540
TV 6.1 EHC	500	920	530	47	1,1	1,5-3,5	~55*	811 1541
TV 8.1 EHC	500	920	530	48	1,4	2-4,5	~55*	811 1542
TV 10.1 EHC	500	1300	530	51	1,7	3,5-6,5	~60*	811 1543
13 bar (PS)								
TV 14.1 EHC	500	1300	530	73	1,7	5,5-10	~60*	811 1544

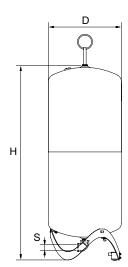
Transfero TV .2 EHC Connect

Mantenimiento de presión de precisión ± 0,2 bar. 2 bombas. 1 válvula de descarga y 2 válvulas motorizadas para desgasificación y presurización. 1 válvula de descarga para presurización con carga máxima.

1 electroválvula y 1 caudalímetro para agua de reposición.

Aislamiento de refrigeración con protección del agua de condensación.

Modelo	В	Н	Т	m [kg]	Pel [kW]	dpu [bar]	SPL [dB(A)]	Núm Art
10 bar (PS)								
TV 4.2 EHC	680	920	530	55	1,5	1-2,5	~55*	811 1550
TV 6.2 EHC	680	920	530	58	2,2	1,5-3,5	~55*	811 1551
TV 8.2 EHC	680	920	530	61	2,8	2-4,5	~55*	811 1552
TV 10.2 EHC	680	1300	530	71	3,4	3,5-6,5	~60*	811 1553
13 bar (PS)								
TV 14.2 EHC	680	1300	530	98	3,4	5,5-10	~60*	811 1554

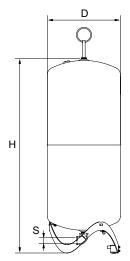

T = Profundidad del aparato.

dpu = Rango de presiones de servicio

*) Funcionamiento de la bomba

Depósito de expansión, Transfero TU/TU...E

Transfero TUDepósito básico. Pie de medida para medición de contenido. Incluido kit de montaje hidráulico.

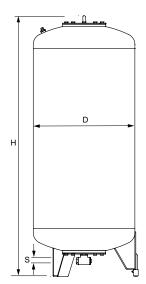

Modelo	VN [I]	D	Н	H***	m [kg]	S	Núm Art
2 bar (PS)							
TU 200	200	500	1339	1565	36	Rp 1 1/4	713 1000
TU 300	300	560	1469	1690	41	Rp 1 1/4	713 1001
TU 400	400	620	1532	1760	58	Rp 1 1/4	713 1002
TU 500	500	680	1627	1858	68	Rp 1 1/4	713 1003
TU 600	600	740	1638	1873	78	Rp 1 1/4	713 1004
TU 800	800	740	2132	2360	99	Rp 1 1/4	713 1005

Transfero TU...E

Depósito secundario.

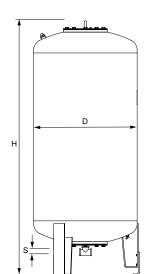
Incluido kit de montaje hidráulico, flexible de conexión y llave de corte con capuchón precintable y con

vaciado rápido mediante llave de bola.


Modelo	VN [i]	D	Н	H***	m [kg]	S	Núm Art
2 bar (PS)							
TU 200 E	200	500	1339	1565	35	Rp 1 1/4	713 2000
TU 300 E	300	560	1469	1690	40	Rp 1 1/4	713 2001
TU 400 E	400	620	1532	1760	57	Rp 1 1/4	713 2002
TU 500 E	500	680	1627	1868	67	Rp 1 1/4	713 2003
TU 600 E	600	740	1638	1873	75	Rp 1 1/4	713 2004
TU 800 E	800	740	2132	2360	98	Rp 1 1/4	713 2005

VN = Volumen nominal

***) Máx. altura con el depósito inclinado



Depósito de expansión, Transfero TG/TG...E

Transfero TG Depósito básico. Pie de medida para medición de contenido. Incluido kit de montaje hidráulico.

Modelo *	VN [I]	D	H**	H***	m [kg]	S	Núm Art
2 bar (PS)							
TG 1000	1000	850	2199	2210	280	Rp 1 1/4	713 1006
TG 1500	1500	1016	2351	2381	360	Rp 1 1/4	713 1007
TG 2000	2000	1016	2848	2876	640	Rp 1 1/4	713 1012
TG 3000	3000	1300	2951	3016	800	Rp 1 1/4	713 1009
TG 4000	4000	1300	3592	3633	910	Rp 1 1/4	713 1010
TG 5000	5000	1300	4216	4275	1010	Rp 1 1/4	713 1011
						<u> </u>	

Transfero TG...E

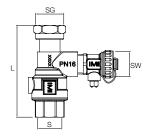
Depósito secundario.

Incluido flexible de conexión y llave de corte con capuchón precintable y con vaciado rápido mediante llave de bola.

Modelo *	VN [I]	D	H**	H***	m [kg]	S	Sw	Núm Art
2 bar (PS)								
TG 1000 E	1000	850	2199	2210	280	Rp 1 1/4	G3/4	713 2006
TG 1500 E	1500	1016	2351	2381	360	Rp 1 1/4	G3/4	713 2007
TG 2000 E	2000	1016	2848	2876	640	Rp 1 1/4	G3/4	713 2012
TG 3000 E	3000	1300	2951	3016	800	Rp 1 1/4	G3/4	713 2009
TG 4000 E	4000	1300	3592	3633	910	Rp 1 1/4	G3/4	713 2010
TG 5000 E	5000	1300	4216	4275	1010	Rp 1 1/4	G3/4	713 2011

VN = Volumen nominal

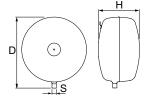
SW = Drenaje


^{*)} Ejecuciones especiales, bajo consulta.

**) Tolerancia 0 /-100.

***) Máx. altura con el depósito inclinado. Tolerancia 0 /-100

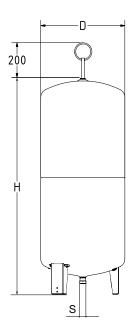
Válvulas de corte para depósito de compensación



Válvula de corte DLV

Rosca hembra en cada lado, conexión mediante racor directo con junta plana para los vasos de expansión.

Modelo	PS [bar]	L	m [kg]	s	SG	sw	Núm Art	
DLV 20	16	97	0,49	Rp3/4	G3/4	G3/4	535 1434	
DLV 25	16	100	0,54	Rp1	G1	G3/4	535 1436	


Depósito de compensación

Statico SD

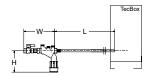
Diseño circular

Modelo	VN [i]	p0 [bar]	D	Н	m [kg]	S	Núm Art
Transfero TV 4,6,8							
SD 50.10	50	4	536	316**	12	R3/4	710 3005
Transfero TV 10, 14							
SD 80.10	80	4	636	346**	16	R3/4	710 3006

Statico SU

Depósito cilíndrico, montado junto a Transfero TV14 (10 bar < psvs ≤ 13 bar).

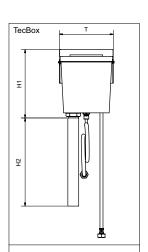
Modelo	VN [I]	p0 [bar]	D	н	H***	m [kg]	S	Núm Art	
10 bar (PS)									
SU 140.10	140	4	420	1274	1489	32	R3/4	710 3007	


VN = Volumen nominal

^{**)} Tolerancia 0 /+35

^{***)} Máx. altura con el depósito inclinado

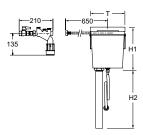
Unidades de reposición de agua Pleno P


Pleno P BA4 R

Unidad para de reposición de agua con Vento/Transfero Connect, Pleno PX/PIX, Simply Compresso C 2.1-80 SWM y en combinación con los módulos Pleno Refill. Cuenta con una válvula de corte, una válvula de retención, un filtro y una válvula antirretorno tipo BA (clase de protección 4) según EN 1717.

Modelo	PS [bar]	В	L	Н	m [kg]	qwm [l/h]	Núm Art
BA4 R	10	210	1300	135	1,1	350* 250** 50*** q(pw-pout) ****	813 3310

qwm = flujo de agua de reposición


- *valor medio máximo de tasa de desgasificación con Vento V/VI y Transfero TV/TI
- **valor medio máximo de tasa de desgasificación con Vento Compact
- *** usando limitador de caudal para cartuchos de tratamiento de bajo caudal
- **** para combinar con Pleno PX/PIX véase la gráfica q(pw-pout) de Pleno Connect

Pleno P AB5

Unidad hidráulica para la operación de reposición de agua con Vento/Transfero Connect. Consta de un depósito intermedio de tipo AB (clase de protección 5) de acuerdo con EN 1717. Para instalación en la parte posterior de cada unidad. Se puede utilizar para módulos de ablandamiento de terceros que no cumplen el requisito de qwm mín. 1300 l/h, por lo que no se puede conectar directamente.

Modelo	PS	T	H1	H2	m	qwm	Núm Art
	[bar]				[kg]	[l/h]	
AB5	10	220	280	1000	1,83	200	813 3320

Pleno P AB5 R

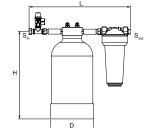
Unidad hidráulica para reposición de agua con Vento/Transfero Connect. 1300 l/h. Consta de desconector Pleno P BA4 R y módulos Pleno P AB5, EN 1717 protección clase 5.

Modelo	PS	T	H1	H2	m	qwm	Núm Art
	[bar]				[kg]	[l/h]	
AB5 R	10	220	280	1000	3,8	200	813 3330

qwm = flujo de agua de reposición

T = Profundidad del aparato.

Pleno Refill


Pleno Refill

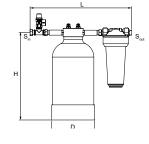
Unidad hidráulica para ablandamiento del agua junto con Vento/Transfero Connect Tec Boxes. Filtro con tamaño malla 25 µm para proteger el sistema hidrónico. Depósito para reducción de la dureza del agua llena de resina de alto grado.

Tuerca giratoria 3/4", rosca externa 3/4", adecuada para junta plana.

Presión nominal: PS 8

Temperatura de trabajo máxima: 45°C Temperatura de trabajo mínima: > 4°C

Modelo	Capacidad	S _{in}	S_{out}	D	Н	L	m	Núm Art
	l x °dH						[kg]	
Refill 16000	16000	G3/4	G3/4	195	383	455	9,1	813 3210
Refill 36000	36000	G3/4	G3/4	220	466	455	13	813 3220
Refill 48000	48000	G3/4	G3/4	270	458	455	16,2	813 3230


Pleno Refill Demin

Unidad hidráulica para desalación del agua junto con Vento/Transfero Connect Tec Boxes. Filtro con tamaño malla 25 μ m para proteger el sistema hidrónico. Botella de desalación llena de resina de alto grado.

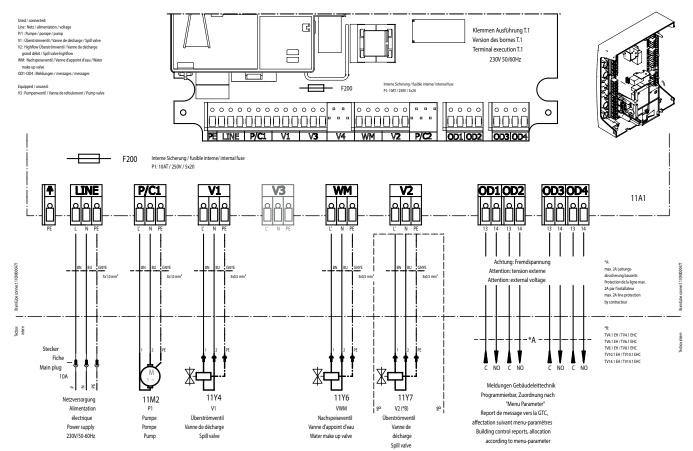
Tuerca giratoria 3/4", rosca externa 3/4", adecuada para junta plana.

Presión nominal: PS 8

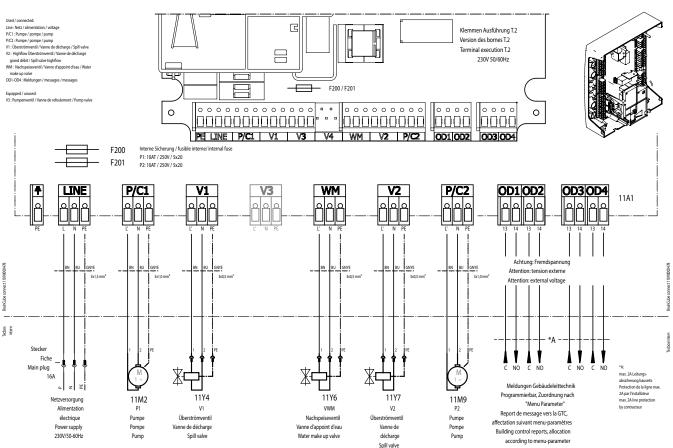
Temperatura de trabajo máxima: 45°C Temperatura de trabajo mínima: > 4°C

Modelo	Capacidad I x °dH	\mathbf{S}_{in}	\mathbf{S}_{out}	D	Н	L	m [kg]	Núm Art
Refill Demin 13500	13500	G3/4	G3/4	220	466	455	13	813 3260
Refill Demin 18000	18000	G3/4	G3/4	270	458	455	16,2	813 3270

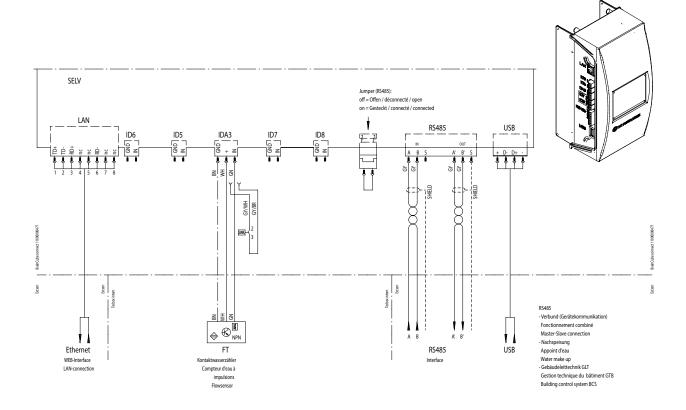
Información adicional


Diseño del sistema: Hoja Planificación y cálculo. Cálculo con HySelect

Tecla rápida: Hoja Planificación y cálculo. Glosario. **Otros accesorios, productos y datos técnicos:** Ficha de datos Pleno, Zeparo y Accesorios



Esquema eléctrico


Alimentación eléctrica Transfero TV.1

Alimentación eléctrica Transfero TV.2

Comunicación

