

Climate Control

IMI Pneumatex

Depósitos intermedios

Para proteger a los vasos de expansion de temperaturas elevadas Desde 8 L a 5000 L

Depósitos intermedios

Destinado a proteger contra temperaturas extremas la bolsa de butilo de un vaso de expansión.

Características principales

Amplio rango de vasos disponibles para diferentes aplicaciones desde 8 L a 5000 L Diseño robusto, brillantemente simple Versiones especiales disponibles bajo petición.

Características técnicas

Aplicaciones:

Instalaciones de calefacción, solares y de refrigeración.

Funciones:

Protección contra temperaturas inadmisibles en los depósitos de expansión.

Presión:

Minima presion admisible, PSmin: 0 bar Maxima presion admisible, PS: ver Códigos

Temperatura:

Depósito intermedio DD/DU: Temperatura maxima admisible, $t_{\rm Smax}$: 110 °C Temperatura minima admissible, $t_{\rm Smin}$: -10 °C Depósito intermedio DG: Temperatura maxima admisible, $t_{\rm Smax}$: 180 °C Temperatura minima admissible, $t_{\rm Smin}$: -10 °C

Materiales:

Acero. Color berilio.

Medio:

Fluidos no tóxicos ni agresivos. Anticongelante a base de etilenglicol o propilenglicol, hasta un 50% de concentración.

Transporte y almacenaje:

En lugares secos y protegidos contra heladas.

Normativa:

Construido según PED 2014/68/EU.

Cálculos

Sistemas de TAZ ≤ 110 °C

Calculation following EN 12828, SWKI HE301-01 *). Sistemas solares ENV 12977-1.

Fórmulas Generales

Vs	Volumen de agua de la instalación	Calefacción	Vs = vs · Q	vs Q	Capacidad específica de agua, tabla 4. Potencia térmica instalada.
			Vs = Conocido		Cálculo del contenido de agua del sistema
		Refrigeración	Vs= Conocido		Cálculo del contenido de agua del sistema

Depósitos intermedios 5)

VN	Volumen nominal 5)	EN 12828,	VN ≥ Vs · Δe + 1.1 · Vgsolar ⁶⁾ + 2 ³⁾	Δе	Δe para tr y t _{min} , tabla 3
		Refrigeración		Vgso-	Volumen en colectores 6)
		SWKI HE301-01	VN ≥ Vs · Δe + 2 · Vgsolar ⁶⁾ + 2 ³⁾	lar	

- 3) Añadir 2 litros cuando vaya a ser instalado un Vento en el circuito.
- 5) Seleccione un recipiente que tenga un contenido nominal igual o superior.
- 6) En calefacción solar, de acuerdo a ENV12977-1: volume de colectores Vgsolar que puede evaporarse; si no, Vgsolar = 0.

Nuestro programa de cálculo HySelect está basado en una metodología de cálculo y en una base de datos avanzada. Los resultados diferirán de otros programas que usen tablas de datos diferentes.

Tabla 1: Coeficiente de expansión «e»

t (TAZ, ts	_{max} , tr, ts _{min}), °C	20	30	40	50	60	70	80	90	100	105	110
e Agua	= 0 °C	0,0016	0,0041	0,0077	0,0119	0,0169	0,0226	0,0288	0,0357	0,0433	0,0472	0,0513
e % peso MEG*												
30 %	= -14,5 °C	0,0093	0,0129	0,0169	0,0224	0,0286	0,0352	0,0422	0,0497	0,0577	0,0620	0,0663
40 %	= -23,9 °C	0,0144	0,0189	0,0240	0,0300	0,0363	0,0432	0,0505	0,0582	0,0663	0,0706	0,0750
50 %	= -35,6 °C	0,0198	0,0251	0,0307	0,0370	0,0437	0,0507	0,0581	0,0660	0,0742	0,0786	0,0830
e % peso	MPG**	•		•	•	•						
30 %	= -12,9 °C	0,0151	0,0207	0,0267	0,0333	0,0401	0,0476	0,0554	0,0639	0,0727	0,0774	0,0823
40 %	= -20,9 °C	0,0211	0,0272	0,0338	0,0408	0,0481	0,0561	0,0644	0,0731	0,0826	0,0873	0,0924
50 %	= -33,2 °C	0,0288	0,0355	0,0425	0,0500	0,0577	0,0660	0,0747	0,0839	0,0935	0,0985	0,1036

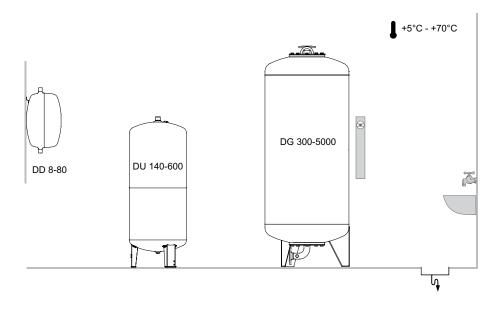
Tabla 3: Δe coef. expansión (en agua fría cuando tr < 5°C; en calor cuando tr > 70°C)

tr, °C		-35	-30	-25	-20	-15	-10	-5	0		80	90	100	105	110
Δe Agua	= 0 °C	-	-	-	-	-	-	-	-	-	0,0062	0,0131	0,0207	0,0246	0,0287
Δe % pes	o MEG*														
30 %	= -14,5 °C	-	-	-	-	-	0,0032	0,0023	0,0012	-	0,0070	0,0145	0,0226	0,0269	0,0312
40 %	= -23,9 °C	-	-	-	0,0081	0,0069	0,0055	0,0038	0,0019	-	0,0073	0,0150	0,0231	0,0274	0,0318
50 %	= -35,6 °C	0,0131	0,0121	0,0109	0,0094	0,0076	0,0056	0,0038	0,0019	-	0,0075	0,0154	0,0236	0,0279	0,0324
Δe % pes	o MPG**														
30 %	= -12,9 °C	-	-	-	-	-	0,0068	0,0045	0,0023	-	0,0078	0,0163	0,0252	0,0298	0,0347
40 %	= -20,9 °C	-	-	-	0,0125	0,0099	0,0077	0,0052	0,0026	-	0,0083	0,0170	0,0265	0,0313	0,0363
50 %	= -33,2 °C	-	0,0187	0,0162	0,0137	0,0111	0,0086	0,0058	0,0029	-	0,0088	0,0179	0,0276	0,0325	0,0376

Tabla 4: Volumen aprox. de agua «vs» *** en calefacciones centrales, por kilovatio de emisor instalado y según su temperatura

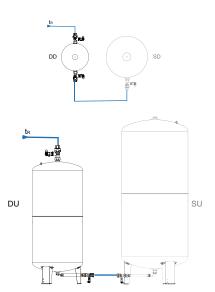
ts _{max} tr	°C	90 70	80 60	70 55	70 50	60 40	50 40	40 30	35 28
Radiadores de fundición	vs litros/kW	14,0	16,5	20,1	20,6	27,9	36,6	-	-
Radiadores de panel	vs litros/kW	9,0	10,1	12,1	11,9	15,1	20,1	-	-
Convectores	vs litros/kW	6,5	7,0	8,4	7,9	9,6	13,4	-	-
Aerotermos	vs litros/kW	5,8	6,1	7,2	6,6	7,6	10,8	-	-
Suelo radiante	vs litros/kW	10,3	11,4	13,3	13,1	15,8	20,3	29,1	37,8

^{*)} MEG = Mono-Etilen Glicol

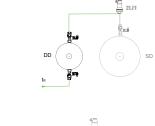

^{*)} SWKI HE301-01: Válido para Suiza

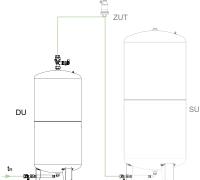
^{**)} MPG = Mono-Propilen Glicol

^{***)} Volumen de agua = generador de calor + tuberías + emisores de calor

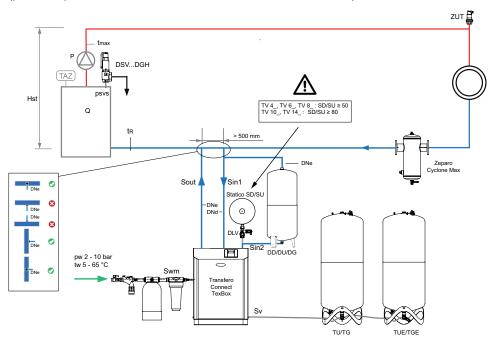

Instalación

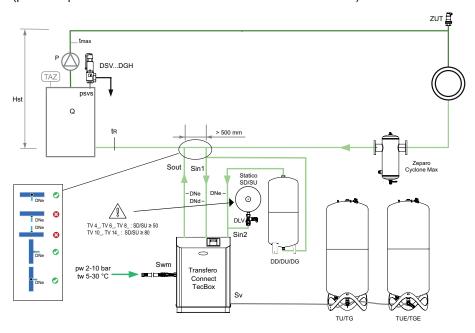
Ejemplo de aplicación


Para instalaciones de calefacción, temperatura de retorno tr > 70°C

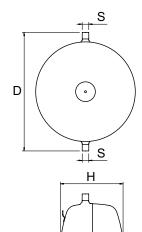

(puede requerir modificaciones en función de las normas locales)

Para instalaciones de refrigeración, temperatura de retorno tr < 5° C


(puede requerir modificaciones en función de las normas locales)

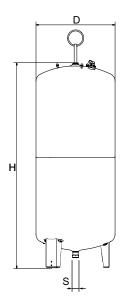


Para instalaciones de calefacción con Transfero, rango de temperaturas de retorno 70°C < tr ≤ 90°C (puede requerir modificaciones en función de las normas locales)


Para instalaciones de refrigeración con Transfero, rango de temperaturas de retorno 0°C < tr ≤ 5°C (puede requerir modificaciones en función de las normas locales)

Zeparo Cyclone Max separador instalado como separador de lodos Zeparo ZUT purgadores de aire para salida y entrada de aire durante el llenado y vaciado Otros accesorios, productos y datos técnicos: Ficha de datos Pleno Connect, Zeparo y Accesorios

Artículos



Depósito intermedio DD

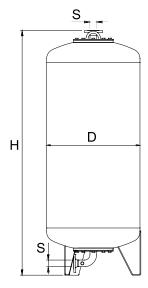
Pletina de fijación para un fácil montaje.

Modelo	VN [i]	D	H**	m [kg]	S	Núm Art
10 bar (PS)						
DD 8.10	8	345	166	3,9	2x R1/2	714 2020
DD 12.10	12	386	201	5,1	2x R1/2	714 2021
DD 18.10	18	430	224	6,3	2x R3/4	714 2022
DD 25.10	25	472	251	8,1	2x R3/4	714 2023
DD 35.10	35	521	280	10	2x R3/4	714 2024
DD 50.10	50	587	317	12,2	2x R1	714 2025
DD 80.10	80	687	347	16,4	2x R1	714 2026

VN = Volumen nominal

Depósito intermedio DU

Sinusring para montaje vertical.


Modelo	VN [I]	D	Н	m [kg]	S	Núm Art
6 bar (PS)						
DU 140.6	140	420	1274	23	2x Rp1 1/2	714 1002
DU 200.6	200	500	1330	29	2x Rp1 1/2	714 1003
DU 300.6	300	560	1451	35	2x Rp1 1/2	714 1004
DU 400.6	400	620	1499	52	2x Rp1 1/2	714 1005
DU 500.6	500	680	1588	60	2x Rp1 1/2	714 1006
DU 600.6	600	740	1596	70	2x Rp1 1/2	714 1007
10 bar (PS)						
DU 200.10	200	500	1330	37	2x Rp1 1/2	714 2003
DU 300.10	300	560	1451	54	2x Rp1 1/2	714 2004
DU 500.10	500	680	1588	89	2x Rp1 1/2	714 2006

VN = Volumen nominal

*) Depósitos > 500 litros, 10 bar bajo pedido.

^{**)} Tolerancia 0 /+35.

Depósito intermedio DG

Pies de apoyo para montaje vertical.

Dos bocas de registro para revisiones internas.

Modelo	VN [I]	D	H**	m [kg]	S EN 1092-1	Núm Art
6 bar (PS)						
DG 700.6	700	750	1987	200	2xDN50	714 1008
DG 1000.6	1000	850	2112	280	2xDN50	714 1009
DG 1500.6	1500	1016	2288	385	2xDN50	714 1010
DG 2000.6	2000	1016	2799	655	2xDN65	714 1015
10 bar (PS)						
DG 300.10	300	500	1865	170	2xDN50	714 2008
DG 500.10	500	650	1915	225	2xDN50	714 2009
DG 700.10	700	750	1987	240	2xDN50	714 2010
DG 1000.10	1000	850	2112	330	2xDN50	714 2011
DG 1500.10	1500	1016	2294	445	2xDN50	714 2012
DG 2000.10	2000	1016	2818	735	2xDN65	714 2017
DG 3000.10	3000	1300	2924	890	2xDN65	714 2014
DG 4000.10	4000	1300	3569	1030	2xDN65	714 2015
DG 5000.10	5000	1300	4214	1145	2xDN65	714 2016
16 bar (PS)						
DG 300.16	300	500	1865	190	2xDN50	714 3000
DG 500.16	500	650	1915	255	2xDN50	714 3001
DG 700.16	700	750	1988	280	2xDN50	714 3002
DG 1000.16	1000	850	2146	385	2xDN50	714 3003
DG 1500.16	1500	1016	2294	510	2xDN50	714 3004
DG 2000.16	2000	1016	2835	820	2xDN65	714 3012
DG 3000.16	3000	1300	2940	995	2xDN65	714 3006
DG 4000.16	4000	1300	3585	1145	2xDN65	714 3007
DG 5000.16	5000	1300	4230	1280	2xDN65	714 3008

VN = Volumen nominal

^{**)} Tolerancia 0 /-100.

