

Climate Control

IMI Pneumatex

Simply Compresso

Druckhaltungssysteme mit KompressorenFür Heizsysteme bis zu 400 kW und Kühlsysteme bis zu 600 kW

Simply Compresso

Simply Compresso ist eine Präzisionsdruckhaltung mit Kompressoren für Heiz-, Solar- und Kühlwassersysteme. Besonders empfehlenswert wenn extreme Kompaktheit, Plug&Play Installation und volle Kontrolle über den Anlagendruck erforderlich sind. Simply Compresso ist die konsequente Erweiterung der Compresso Connect Serie für Installationen mit 4 bar Sicherheitsventil und bis zu 400 kW Heizleistung. Die **BrainCube Connect** Steuerung mit Touchdisplay enthält neue Verbindungsschnittstellen, welche die Kommunikation mit dem Gebäudemanagementsystem und anderen BrainCubes genauso ermöglichen, wie die Fernsteuerung des Druckhaltungssysteme über das Internet.

Hauptmerkmale

Verbessertes Design für leichten und komfortablen Betrieb

Stabiles, beleuchtetes 3,5" TFT Touchdisplay in Farbe. Intuitive und anwendungsfreundliche Menüführung. Web-basierte Schnittstelle mit Fernsteuerung über das Internet. Das BrainCube Connect Bedienfeld ist in die TecBox integriert.

Modernste Verbindungsschnittstellen

Standardisierte Anschlüsse an Gebäudemanagementsysteme und die Fernwartung (RS485, Ethernet, USB). Dadurch sind eine zeitsparende Inbetriebnahme und Wartung sowie Kontrolle der Betriebsdaten möglich.

Plug & Play Installation und Inbetriebnahme

Die Inbetriebnahme der Simply Compresso erfordert nur 3 einfache Schritte.

Druckhaltung mit ECO-night Modus Reduziert die Kompressorlaufzeit auf ein absolutes Minimum

Technische Beschreibung – TecBox-Steuereinheit

Anwendungsbereich:

Heiz-, Solar- und Kühlwassersysteme. Für Anlagen nach EN 12828, SWKI HE301-01, Solarsysteme nach EN 12976, ENV 12977 mit bauseitigem Übertemperaturschutz bei Stromausfall.

Druck:

Min. zulässiger Druck, PSmin: 0 bar Max. zulässiger Druck PS: 4 bar Min. Arbeitsdruck, dpu min: 0,5 bar Max. Arbeitsdruck, dpu max: 3,5 bar

Temperatur:

Max. zulässige Temperatur, $\rm t_{Smax}$: 70 °C Min. zulässige Temperatur, $\rm t_{Smin}$: 5 °C

Umgebungstemperatur:

Max. zulässige Umgebungstemperatur, t_{Amax} : 40 °C

Min. zulässige Umgebungstemperatur t_{Amin}: 5 °C

Genauigkeit:

Präzisionsdruckhaltung ± 0,1 bar

Spannungsversorgung:

1 x 230V (-6 % + 10 %), 50/60 Hz

Elektrische Anschlussleistung: siehe Artikel.

Schutzart:

IP 22 nach EN 60529

Schalldruckpegel:

59 dB(A) /1 bar

Mechanische Anschlüße:

Anschluß an das System S: G1/2" Anschluß für die Wassernachspeisung Swm: G3/4"

Werkstoffe:

Im Wesentlichen Stahl, Messing, Rotguss.

Transport und Lagerung:

In frostfreien, trockenen Räumen

Normen:

Gebaut nach MD 2006/42/EC, Annex II 1.A EMC-D. 2014/30/EU

Ausdehnungsgefäß:

Das vormontierte Basisgefäss ist Teil der Steuereinheit TecBox Für mehr Information siehe: Technische Beschreibung – Ausdehnungsgefäß.

Technische Beschreibung – Ausdehnungsgefäß

Anwendungsbereich:

Das primäre Ausdehnungsgefäß ist Teil der Steuereinheit TecBox. Das optionale Erweiterungsgefäß wird ebenfalls in die TecBox montiert.

Medien:

Nicht aggressive und nicht giftige Medien für den Einsatz im Anwendungsbereich.

Frostschutzmittelzusatz auf Ethylen- oder Propylenglykolbasis 50 %.

Druck:

Min. zulässiger Druck, PSmin: 0 bar Max. zulässiger Druck PS: 4 bar

Temperatur:

Max. zulässige Blasentemperatur, t_{Bmax} : 70 °C Min. zulässige Blasentemperatur, t_{Bmin} : 5 °C Für PED Anwendungen:

Max. zulässige Temperatur, $t_{\rm Smax}$: 120 °C Min. zulässige Temperatur, $t_{\rm Smin}$: -10 °C

Werkstoffe:

Stahl. Farbe Beryllium.

Airproof-Butylblase nach EN 13831 und IMI Pneumatex-Werksnorm.

Transport und Lagerung:

In frostfreien, trockenen Räumen

Normen:

Gebaut nach PED 2014/68/EU.

Gewährleistung:

Compresso CD, CD...E: 5 Jahre Gewährleistung auf das Gefäß.

Funktion, Ausrüstung, Eigenschaften

Plug & Play Installation und Inbetriebnahme

Dank des integrierten Basisgefässes mit einem bereits werkseitig kalibrierten Sensor für den Gefäßinhalt ist die Inbetriebnahme sehr einfach wie folgt:

- 1. Verrohre die TecBox mit der Anlage
- 2. Verbinde den Stecker mit der Spannungsversorgung
- 3. Folge den Anweisungen im Display der BrainCube

BrainCube Connect-Steuereinheit

- BrainCube-Steuerung garantiert den intelligenten, vollautomatischen und sicheren Betrieb des Systems.
 Selbstoptimierend mit Memoryfunktion.
- Messwerterfassung und Systemanalyse, chronologischer Meldungsverlauf mit Priorisierungsmöglichkeit, fernsteuerbar mit Echtzeitanzeige, regelmäßige automatische Selbsttests.
- Resistives, berührungsempfindliches und beleuchtetes 3,5"-TFT-Farbdisplay. Intuitive funktionale Menüstruktur mit Wisch- und Tippbedienung und Soforthilfe in Pop-up-Fenstern. Mehrsprachige Volltext- und/oder grafische Darstellung aller relevanten Parameter und Betriebszustände.
- Das vormontierte primäre Ausdehnungsgefäß ist Teil der Steuereinheit TecBox.

Nachspeisung (Simply Compresso 4 C2.1-80 SWM)

- Fillsafe: Nachspeiseüberwachung und -ansteuerung mit integrierter Kontaktwasserzähler und Magnetventil.
- Anschluss für die optionalen Pleno P BA4R
 Nachspeisemodule mit Systemtrennung nach EN 1717.
- Softsafe: Überwachung und Ansteuerung eines optionalen Geräts zur Aufbereitung des Nachspeisewassers.

Druckhaltung

- Präzisionsdruckhaltung ±0,1 bar
- ECO-night Modus mit programmierbarem Timer der hilft die Laufzeit des Kompressors auf ein absolutes Minimum zu beschränken,, indem er die zur Verfügung stehende Schaltdifferenz zwischen maximalem und minimalen Anlagendruck in der Nacht verwendet. Vor dem Eintreten der "Nachtruhe" wird der Systemdruck auf den max. Wert geregelt.
- Silent-run Kompressor

Ausdehnungsgefäß

- Airproof-Butylblase.
- Inklusive Montageset zur luftseitigen Verbindung der Gefäße und Kappenabsperrhahn für den wasserseitigen Anschluss mit Kugelhahn zur schnellen Entleerung (CD...E).
- Gefäß unten mit Kondensatablass.
- Vormontiert als Teil der TecBox (Basisgefäss CD).

Berechnung

Druckhaltung für Systeme TAZ ≤ 100 °C

Berechnung nach EN 12828, SWKI HE301-01 *).

Verwenden Sie bei allen speziellen Anwendungen wie Solarsystemen, Systemen für höhere Temperaturen als 100 °C oder Kühlsysteme für Temperaturen unter 5 °C, bitte unser Berechnungsprogramm HySelect oder nehmen Sie direkt Kontakt zu uns auf.

Allgemeines Gleichungen

Vs	Wasserinhalt der Anlage	Heizung	Vs = vs · Q	vs Q	Spezifischer Wasserinhalt, Tabelle 4. Installierte Heizleistung.
			Vs = bekannt		Systemauslegung, Inhalts-Berechnung.
		Kühlung	Vs= bekannt		Systemauslegung, Inhalts-Berechnung.
	<u> </u>	511 40000			T
Ve	Ausdehnungsvolumen	EN 12828	Ve = e · (Vs+Vhs)	e, ehs	Ausdehnungskoeffizient für ts _{max} , Tabelle 1
		Kühlung	Ve = e · (Vs+Vhs)	e, ehs	Ausdehnungskoeffizient für ts _{max} , Tabelle 1 ⁷⁾
		SWKI HE301-01 Heizung	$Ve = e \cdot Vs \cdot X^{(1)} + ehs \cdot Vhs$	e ehs	Ausdehnungskoeffizient für (ts _{max} + tr)/2, Tabelle Ausdehnungskoeffizient für ts _{max} , Tabelle 1
		SWKI HE301-01 Kühlung	$Ve = e \cdot Vs \cdot X^{(1)} + ehs \cdot Vhs$	e, ehs	Ausdehnungskoeffizientfür ts _{max} , Tabelle 1 ⁷⁾
	W	Kahi	V>0.005 V->0.1		1
Vwr	Wasservorlage	Kühlung	Vwr ≥ 0,005 · Vs ≥ 3 L		
		SWKI HE301-01	Vwr ist berücksichtigt in Ve mit dem Koeffizienten X		
p0	Mindestdruck 2)	EN 12828,	p0 = Hst/10 + 0,2 bar ≥ pz	Hst	Statische Höhe
ρυ	Unterer Grenzwert für die Druckhaltung	Kühlung	pu - nst/10 + 0,2 bar ≥ p2	pz	Minimaler Zulaufdruck für Geräte z.B. Um- wälzpumpe oder Wärmeerzeuger
		SWKI HE301-01	p0 = Hst/10 + 0,3 bar ≥ pz		
	T			1	
pa	Anfangsdruck Unterwert für eine optimale Druckhaltung		pa ≥ p0 + 0,3 bar		
pe	Enddruck			psvs	Ansprechdruck Sicherheitsventil
•	Oberwert für eine optimale			dpsvs _c	Schliesdruckdifferenz des Sicherheitsventils
	Druckhaltung	EN 12828	pe ≤ psvs - dpsv _c	dpsvs _c = dpsvs _c =	0,5 bar für psvs ≤ 5 bar ⁴⁾ 0,1 · psvs für psvs > 5 bar ⁴⁾
		Kühlung	pe ≤ psvs - dpsv _c	dpsvs _c =	0,6 bar für psvs ≤ 3 bar ⁴⁾ 0,2 · psvs für psvs > 3 bar ⁴⁾
		SWKI HE301-01 Heizung	pe ≤ psvs/1,15 und pe ≤ psvs - 0,3 bar		psvs 4)
		SWKI HE301-01 Kühlung, Solar, Wärmepumpe	pe ≤ psvs/1,3 und pe ≤ psvs - 0,6 bar		psvs ⁴⁾
omp	resso				
pe	Enddruck Oberwert fur eine optimale Druckhaltung		pe=pa+0,2		
VN	Nennvolumen des Ausdehnungsgefäßes 5)	EN 12828, Kühlung			
		SWKI HE301-01	VN ≥ (Ve + 2³) · 1,1		

- 1) Heizung, Kälte, Solar: Q \leq 10 kW: X = 3 | 10 kW < Q \leq 150 kW: X = (87-0,3 \cdot Q)/28 | Q > 150 kW: X = 1,5 Erdwärmesondenanlagen: X = 2,5
- 2) Die Formel für den Mindestdruck p0 gilt für den Einbau der Druckhaltung auf der Saugseite der Umwälzpumpe. Bei druckseitigem Einbau ist p0 um den Pumpendruck Δp zu erhöhen.
- 3) 2 Liter Zuschlag bei Einsatz von Vento Entgasungssystemen.
- 4) Die verwendeten Sicherheitsventile müssen diesen Anforderungen genügen. Setzen Sie bitte ausschließlich geprüfte und zertifizierte Sicherheitsventile des Typs H und DGH für Heizsysteme und Typs F und DGF für Kühlsysteme ein. Für Anlagen nach SWKI HE301-01 sind ausschliesslich Sicherheitsventile der Zulassungsart DGF und DGH zu verwenden.
- 5) Bitte wählen Sie ein Gefäß mit einem dementsprechenden oder höheren Nenninhalt aus.
- 7) Max. Systemstillstandstemperatur, normalerweise 40°C für Kälteanlagen und Erdsonden mit Erdreichregeneration, 20°C für sonstige Erdsonden.
- *) SWKI HE301-01: Gilt für die Schweiz

Unser Berechnungsprogramm HySelect berücksichtigt eine weitergehende Berechnungsmethodik und Datenbasis. Ergebnisabweichungen sind deshalb nicht ausgeschlossen.

Tabelle 1: e Ausdehnungskoeffizient

t (TAZ, ts _{max} ,	tr, ts _{min}), °C	20	30	40	50	60	70	80	90	100	105	110		
e Wasser	= 0 °C	0,0016	0,0041	0,0077	0,0119	0,0169	0,0226	0,0288	0,0357	0,0433	0,0472	0,0513		
e % Gewicht MEG*														
30 %	= -14,5 °C	0,0093	0,0129	0,0169	0,0224	0,0286	0,0352	0,0422	0,0497	0,0577	0,0620	0,0663		
40 %	= -23,9 °C	0,0144	0,0189	0,0240	0,0300	0,0363	0,0432	0,0505	0,0582	0,0663	0,0706	0,0750		
50 %	= -35,6 °C	0,0198	0,0251	0,0307	0,0370	0,0437	0,0507	0,0581	0,0660	0,0742	0,0786	0,0830		
e % Gewicht	MPG**													
30 %	= -12,9 °C	0,0151	0,0207	0,0267	0,0333	0,0401	0,0476	0,0554	0,0639	0,0727	0,0774	0,0823		
40 %	= -20,9 °C	0,0211	0,0272	0,0338	0,0408	0,0481	0,0561	0,0644	0,0731	0,0826	0,0873	0,0924		
50 %	= -33,2 °C	0,0288	0,0355	0,0425	0,0500	0,0577	0,0660	0,0747	0,0839	0,0935	0,0985	0,1036		

Tabelle 4: vs ca. Wasserinhalt *** von Gebäudeheizungen bezogen auf die installierte Heizflächenleistung Q

ts _{max} tr	°C	90 70	80 60	70 55	70 50	60 40	50 40	40 30	35 28
Radiatoren	vs Liter/kW	14,0	16,5	20,1	20,6	27,9	36,6	-	-
Plattenheizkörper	vs Liter/kW	9,0	10,1	12,1	11,9	15,1	20,1	-	-
Konvektoren	vs Liter/kW	6,5	7,0	8,4	7,9	9,6	13,4	-	-
Lüftung	vs Liter/kW	5,8	6,1	7,2	6,6	7,6	10,8	-	-
Fussbodenheizung	vs Liter/kW	10,3	11,4	13,3	13,1	15,8	20,3	29,1	37,8

^{*)} MEG = Mono-Ethylene Glycol

Tabelle 5: Tabelle 5: DNe Richtwerte für Ausdehnungsleitungen bei Simply Compresso

Länge bis ca. 30 m	DNe	20	25
Heizung :			
EN 12828	Q kW	1000	1700
SWKI HE301-01*)	Q kW	300	600
Kühlung :			
ts _{max} ≤ 50 °C	Q kW	1600	2700

^{*)} Gilt für die Schweiz

Temperaturen

ts _{max}	Maximale Systemtemperatur Maximale Temperatur zur Berechnung der Volumenausdehnung. Bei Heizungsanlagen die Auslegungs-Vorlauftemperatur, mit der eine Heizungsanlage bei der tiefsten anzunehmenden Außentemperatur (Norm-Außentemperatur nach EN 12828) betrieben werden muss. Bei Kühlsystemen betriebs- oder stillstandsbedingte maximale Temperatur, bei Solarsystemen die Temperatur, bis zu der Verdampfung vermieden werden soll.
ts _{min}	Minimale Systemtemperatur Minimale Temperatur zur Berechnung der Volumenausdehnung. Sie entspricht dem Erstarrungspunkt. Die minimale Systemtemperatur wird in Abhängigkeit des prozentualen Anteils des Frostschutzmittels am Wasserinhalt ermittelt. Bei Wasser ohne Frostschutzmittel ist ts _{min} = 0.
tr	Rücklauftemperatur Rücklauftemperatur der Heizungsanlage bei der tiefsten anzunehmenden Außentemperatur (Norm-Außentemperatur nach EN 12828).
TAZ	Sicherheitstemperaturbegrenzer, Sicherheitstemperaturwächter, Absicherungstemperatur Sicherheitseinrichtung nach EN 12828 zur Temperaturabsicherung von Wärmeerzeugern. Bei Überschreitung der eingestellten Absicherungstemperatur schaltet die Beheizung ab. Bei Begrenzern erfolgt eine Verriegelung, bei Wächtern wird die Wärmezufuhr bei Unterschreiten der eingestellten Temperatur selbsttätig wieder freigegeben. Einstellwert für Anlagen nach EN 12828 ≤ 110 °C.

^{**)} MPG = Mono-Propylene Glycol

^{***)} Wasserinhalt = Wärmeerzeuger + Hausverteilung + Heizflächen

Präzisionsdruckhaltung

Luftgesteuerte Compresso minimieren die Druckschwankungen zwischen pa und pe.

± 0,1 bar

ECO-night operation

Spezielle Betriebsweise der Druckhaltung zur Reduzierung der Kompressorlaufzeit auf ein absolutes Minimum mit Hilfe der Ausnutzung der verfügbaren Hysterese zwischen minimalem Anfangs- und maximalem Enddruck.

 pa_{min}

pa pe pe optimaler Druckbereich *)

**) ≥ 0,3 bar

Heizung: \geq psvs · (1-1/1,15) \geq 0,3 bar Kühlung, Solar, Wärmepumpen: \geq psvs · (1-1/1,3) \geq 0,6 bar

p0 Mindestdruck

Compresso

p0 und die Schaltpunkte werden von der BrainCube berechnet.

pa Anfangsdruck

Compresso

Wenn Systemdruck < pa läuft der Kompressor an. pa = p0 + 0.3

pe Enddruck

Compresso

pe durch Aufheizen überschritten, dann Magnetventil luftseitig «auf».

pe = pa + 0.2

Schnellauswahl - Heizungsanlagen nach SWKI HE301-01

Heizungsanlagen TAZ ≤ 100 °C, ohne Frostschutzmittelzusatz

Für eine genaue Berechnung kann die Software HySelect verwendet werden.

			TecBox und Ausdehnungsgefäss										
O FLAME	Statische Höhe	Radia	toren	Plattenhe	Fußbodenheizung								
Q [kW]	Hst [m]	70 50	70 50 50 40 70 50 50 40				50 40						
		Nennvolumen VN [liter]											
< 100	27	C2.1-80	C2.1-80	C2.1-80	C2.1-80	C2.1-80							
150	0 27 C2.1-80 + CD 80E		C2.1-80 + CD 80E	C2.1-80	C2.1-80	C2.1-80							
200	27	C2.1-80 + CD 80E	C2.1-80 + CD 80E	C2.1-80	C2.1-80	C2.1-80 + CD 80E							
250	25	C2.1-80 + CD 80E	C2.1-80 + CD 80E	C2.1-80 + CD 80E	C2.1-80 + CD 80E	C2.1-80 + CD 80E							
300	22	-	-	C2.1-80 + CD 80E	C2.1-80 + CD 80E	C2.1-80 + CD 80E-							
350	350 19 -		-	C2.1-80 + CD 80E	C2.1-80 + CD 80E	-							
400	18	-	-	C2.1-80 + CD 80E	C2.1-80 + CD 80E	-							

Q = 200 kW

psv = 4 bar

Hst = 25 m

Plattenheizkörper = 70 | 50 °C

Auswahl:

Simply Compresso C2.1-80 S Erweiterungsgefäss: nicht erforderlich

Überprüfung Sicherheitsventil psvs und statische Höhe hst:

für TAZ = 100 °C SWKI HE301-01:

- Hst: 25 < 27

=> o.k.

- psvs: $(25/10 + 0.8) \cdot 1.15 = 3.795 \le 4.0$

=> o.k

Zubehör

Ausdehnungsleitung

Nach Tabelle 5.

Kappenabsperrhahn DLV

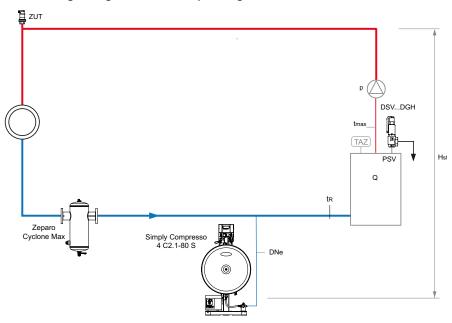
Im Lieferumfang enthalten.

Zeparo

Schnellentlüfter Zeparo ZUT oder ZUP an jedem Hochpunkt zum Entlüften beim Füllen und Belüften beim Entleeren. Abscheider für Schlamm und Magnetit in jeder Anlage in den Hauptrücklauf zum Wärmeerzeuger. Falls keine zentrale Entgasung (z. B. Vento V Connect) installiert wird, kann ein Mikroblasenabscheider im Hauptstrom, möglichst vor der Umwälzpumpe, eingebaut werden.

 $\label{eq:definition} \mbox{Die statische H\"{o}he Hst}_{\mbox{\tiny m}} \mbox{ It. Tabelle \"{u}ber dem Mikroblasenabscheider darf nicht \"{u}berschritten werden.}$

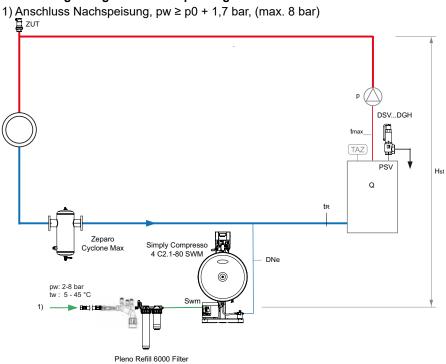
ts _{max} °C	90	80	70	60	50	40	30	20	10
Hst _m mWs	15,0	13,4	11,7	10,0	8,4	6,7	5,0	3,3	1,7



Installationsbeispiele

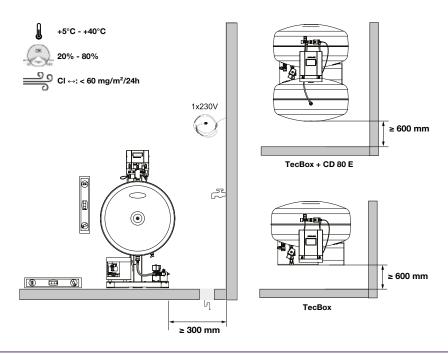
Simply Compresso 4 C2.1-80 S

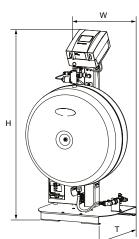
TecBox mit 1 Kompressor und Basisgefäß, Präzisionsdruckhaltung ± 0,1 bar.


Für Heizungsanlagen ohne Nachspeisung

Simply Compresso 4 C2.1-80 SWM

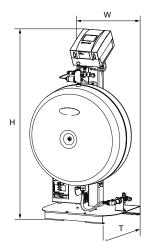
TecBox mit 1 Kompressor und Basisgefäß, Präzisionsdruckhaltung ± 0,1 bar, Pleno P BA4R für Nachspeisung und Pleno Refill für Wasseraufbereitung.


Für Heizungsanlagen mit Nachspeisung


Zeparo Cyclone Max Schmutzabscheider mit Cyclone-Technologie und Magnet ZCXM im Rücklauf. **Zeparo ZUT** zur automatischen Entlüftung beim Füllen, Belüften beim Entleeren. **Weiteres Zubehör, Produkt- und Auswahldetails:** siehe Datenblätter Pleno, Zeparo und Zubehör.

Installation

TecBox-Steuereinheit, Simply Compresso 4 C2.1-80



Simply Compresso 4 C2.1-80 S

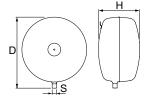
Präzisionsdruckhaltung +/- 0,1 bar, ECO-night Modus.

1 Kompressor, 1 Überströmventil, 1 Basisgefäß.

Тур	PS [bar]	max. dpu [bar]	VN [i]	W	Н	Т	m [kg]	Pel [kW]	EAN	Artikel-Nr.
C 2.1-80 S	4	3,5	80	603	1107	481	39	0,3	7640153570970	301021-41011

Simply Compresso 4 C2.1-80 SWM

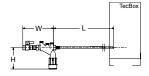
Präzisionsdruckhaltung +/- 0,1 bar, ECO-night Modus.


- 1 Kompressor, 1 Überströmventil, 1 Basisgefäß.
- 1 Wasserzähler und 1 Magnetventil für die Nachspeisung.

Тур	PS [bar]	max. dpu [bar]		W	Н	Т	m [kg]	Pel [kW]	EAN	Artikel-Nr.
C 2.1-80-SWM	4	3,5	80	603	1107	481	41	0,3	7640161637443	301021-41012

VN = Nennvolumen

Erweiterungsgefäß

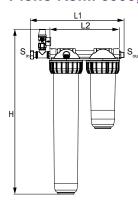

Compresso CD...E

Erweiterungsgefäß. Inklusive Flexrohr für den wasserseitigen Anschluss mit Simply Compresso TecBox, Montageset zur luftseitigen Verbindung mit Simply Compresso TecBox.

Тур	VN [I]	D	Н	m [kg]	S	EAN	Artikel-Nr.
4 bar (PS)							
CD 80.4 E	80	636	346 **)	16	R3/4	7640161637450	301021-41003

VN = Nennvolumen

Schutzmodul für Nachspeisesysteme

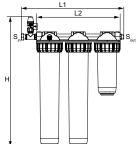

Pleno P BA4 R

Zusatzhydraulikeinheit für die Nachspeisung zur Verwendung zusammen mit Vento/Transfero Connect/Simply Compresso 4 C2.1-80 SWM. Bestehend aus Systemtrenner Typ BA (Schutzklasse 4) entsprechend EN 1717, Filter, Rückschlagventil und Absperrventil. Mit anschluss für Pleno Refill Einheiten. Anschluss (Swm) G1/2.

Тур	PS [bar]	В	L	Н	m [kg]	qwm [l/h]	EAN	Artikel-Nr.
BA4 R	10	210	1300	135	1,1	350 * 250 ** 50 *** q(pw-pout) ****	7640161630147	813 3310

qwm = Wassernachspeisemenge

Pleno Refill 6000, 12000 / Pleno Refill Demin 2000, 4000



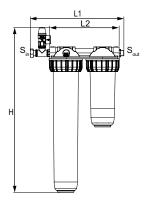
Pleno Refill

Hydraulikeinheit zur Wasserenthärtung für die Verwendung zusammen mit Vento/Transfero Connect. Bestehend aus einem Filter mit 25 µm Maschenweite um das hydronische System vor Einschwemmungen zu schützen und einer Enthärterflasche mit hochwirksamer Harzfüllung. Entwickelt für die Plug&Play Montage zusammen mit Transfero/Vento Connect. Einheiten für alle Anwendungen auch für Transfero Connect und Vento Connect bei Verwendung der Durchflussdrossel. Die Drossel liegt jedem Transfero/Vento Connect bei.

Enthärtungsarmatur mit Wandhalter und 25 µm Filter

3/4" freilaufende Mutter, 3/4" AG flachdichtend, mit Durchflussbegrenzer.

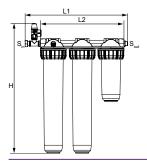
Тур	Kapazität I x °dH	S _{in}	S _{out}	Н	L1	L2	m [kg]	EAN	Artikel-Nr.
Refill 6000 Filter	6000	G3/4	G3/4	644	366	271	4,6	7640153570864	813 3010
Refill 12000 Filter	12000	G3/4	G3/4	644	513	420	8,3	7640161631946	813 3011


^{**)} Toleranz 0 / +35.

^{*} maximaler Durchflussmittelwert für die Entgasung des Nachspeisewassers mit Vento V/VI und Transfero TV/TVI

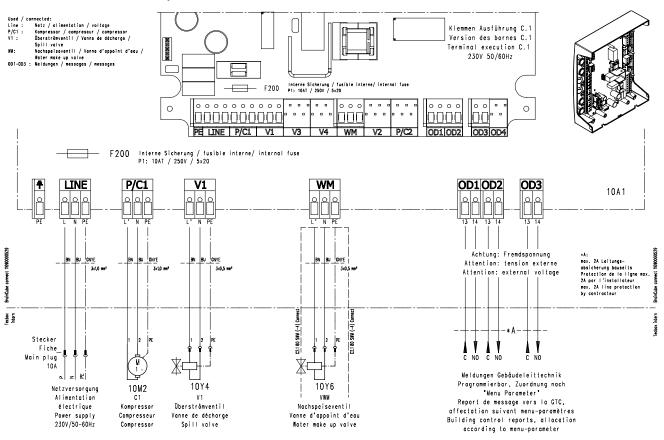
^{**} maximaler Durchflussmittelwert für die Entgasung des Nachspeisewassers mit Vento Compact *** Mit der Verwendung von Durhflussbegrenzer bei Aufbereitungskartuschen mit niedrigem Durchflussbeiwert

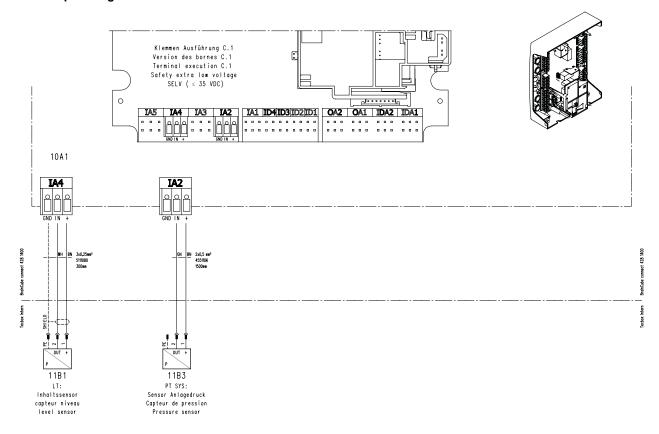
^{****} für die Kombination mit Pleno PX/PIX, siehe q(pw-pout) Diagramm im Pleno Connect Datenblatt

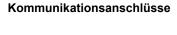


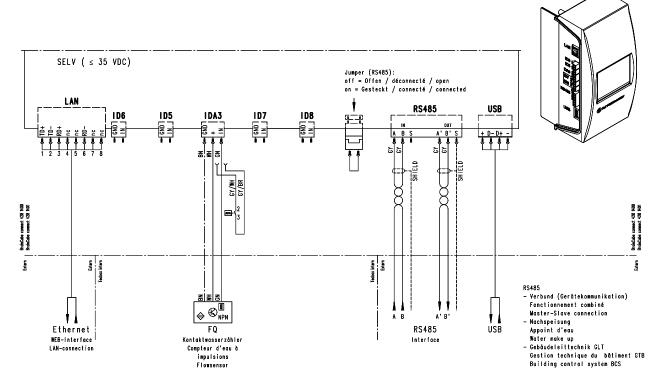
Armatur für demineralisiertes Wasser mit Wandhalter und 25 µm Filter

3/4" freilaufende Mutter, 3/4" AG flachdichtend, mit Durchflussbegrenzer. Entspricht der SWKI-BT-102-1.


Тур	Kapazität I x °dH	S _{in}	$\mathbf{S}_{\mathrm{out}}$	Н	L1	L2	m [kg]	EAN	Artikel-Nr.
Refill Demin 2000 filter	2000	G3/4	G3/4	644	366	271	4,6		813 3015
Refill Demin 4000 filter	4000	G3/4	G3/4	644	513	420	8,3		813 3016


Elektroschema


230 V / 50/60 Hz


Elektrischer Anschluss Compresso C.1

Niederspannungsanschlüsse

Die in dieser Broschüre gezeigten Produkte, Texte, Bilder, Zeichnungen und Diagramme können ohne Vorankündigung und Angabe von Gründen von IMI Hydronic Engineering (Teil von Climate Control, einem Sektor von IMI plc) geändert werden. Um die aktuellsten Informationen über unsere Produkte und Spezifikationen zu erhalten, besuchen Sie bitte unsere Website unter climatecontrol.imiplc.com (Länder-/Spracheinstellung ggflls. rechts oben ändern)