

Climate Control

IMITA

STAD-R

Vannes d'équilibrageDN 15-25 avec Kv réduit

STAD-R

Conçue pour les rénovations, la vanne d'équilibrage STAD-R se caractérise par une précision élevée et un champ d'applications étendu. Elle est parfaitement indiquée pour être utilisée du côté secondaire des installations de chauffage, de climatisation et de distribution d'eau sanitaire.

Caractéristiques principales

Poignée

Équipée d'un indicateur numérique pour un réglage simple et précis. Fonction d'arrêt positif pour simplifier la maintenance.

Prises de pression auto-étanches Permet d'équilibrer vite et bien.

Construction en AMETAL®

Alliage résistant au dézingage pour garantir une longue durée de vie et réduire le risque de fuite.

Caractéristiques techniques

Applications:

Installations de chauffage et de refroidissement.

Installations de distribution sanitaire.

Fonctions:

Équilibrage Préréglage Mesure Arrêt Vidange

Dimensions:

DN 15-25

Classe de pression :

PN 25

Température :

Température de service maxi. : 120°C (Températures plus élevées, maxi. 150°C: Contactez votre service commercial).

commerciai).

Température de service mini. : -20°C

Fluide:

Eau ou fluides neutres, eau glycolée (0-57%).

Matériaux :

Corps et tête : AMETAL®

Etanchéité (corps/tête) : Joint torique en

EPDM

Cône: AMETAL®

Étanchéité du siège : Joint torique en

EPDM

Tige : AMETAL® Rondelle : PTFE

Joint de tige : Joint torique en EPDM

Ressort : Acier inox

Poignée : Polyamide et TPE

Prises de pression : AMETAL®

Etanchéités : EPDM

Bouchons: Polyamide et TPE

Vidange : AMETAL® Etanchéité : EPDM Joint : Fibre aramide

AMETAL® est le nom donné par IMI à son alliage résistant à la dézincification.

Marquage:

Corps: IMI, TA, PN 25/400 WWP, DN et

pouce.

Poignée: TA, type de vanne et DN.

Connexion:

Taraudage selon norme ISO 228. Longueur du taraudage selon norme

ISO 7/1.

Prises de pression

La prise de pression est auto-étanche. Pour procéder à la mesure de la pression, dévisser le capuchon puis introduire la sonde de mesure au travers de la prise de pression.

Vidange

Robinet de vidange pour raccord tuyau souple G3/4.

Réglage

Supposons qu'après examen des abaques pression/débit, on souhaite régler la vanne à la position 2,3:

- 1. Fermer complètement la vanne (fig .1).
- 2. Ouvrir la vanne à la position de réglage 2,3. (fig.2).
- Visser la tige intérieure dans le sens des aiguilles d'une montre, jusqu'à la butée, à l'aide d'une clé à six pans de 3 mm.
- 4. La vanne est maintenant préréglée.

Pour vérifier la position de préréglage d'une vanne, commencer par fermer la vanne (position 0,0). Ensuite, ouvrir la vanne jusqu'à la butée. (position 2,3 selon l'exemple de la figure 2).

Pour déterminer la dimension d'une vanne ainsi que le préréglage correct, se servir des abaques qui, pour chaque diamètre de vanne, donnent la perte de charge en fonction des préréglages et des débits.

La vanne peut être ouverte à quatre tours au maximum (fig 3). Une ouverture supérieure à 4 tours n'augmente pratiquement pas le débit.

Fig. 1 Vanne fermée

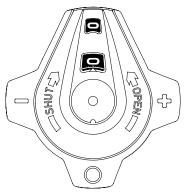
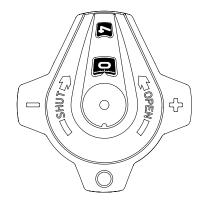
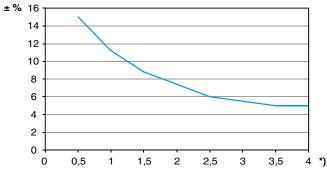



Fig. 2 anne réglée à la position 2,3

Fig. 3 Vanne ouverte

Précision


La mise à zéro est calibrée et ne doit pas être modifiée.

Ecart relatif maxi (en % de la valeur Kv)

La courbe (fig 1) est valable lorsque la vanne est montée normalement sur la tuyauterie (fig 2) et selon les règles de l'art. Il faut éviter de la monter immédiatement en aval d'une pompe par exemple ou d'une autre robinetterie ou d'un coude. La pression différentielle limite en réglage ne doit pas être dépassée.

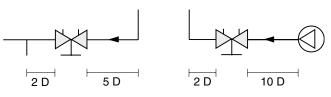

La vanne peut être montée avec le débit allant dans le sens inverse de celui indiqué sur le corps de vanne. Dans ce cas, il peut en résulter une erreur supplémentaire de mesure jusqu'à 5%.

Fig 1

*) Position de préréglage (Nombre de tours).

Fig 2

D = DN de la vanne

Facteurs de correction

Le mesure du débit est étalonnée pour de l'eau à 20°C. Pour les fluides ayant une viscosité à peu près identique à celle de l'eau (≤20cSt=3°E=100S.U.), il suffit de compenser la différence de densité. Avec des températures basses, la viscosité augmente. Il y a risque d'écoulement laminaire,

risque d'autant plus important que le diamètre de la vanne est réduit, que la vanne est proche de la fermeture et que la pression différentielle est faible. La correction du débit est possible à l'aide du logiciel HySelect ou en lecture directe avec l'appareil d'équilibrageTA-SCOPE.

Valeurs Kv

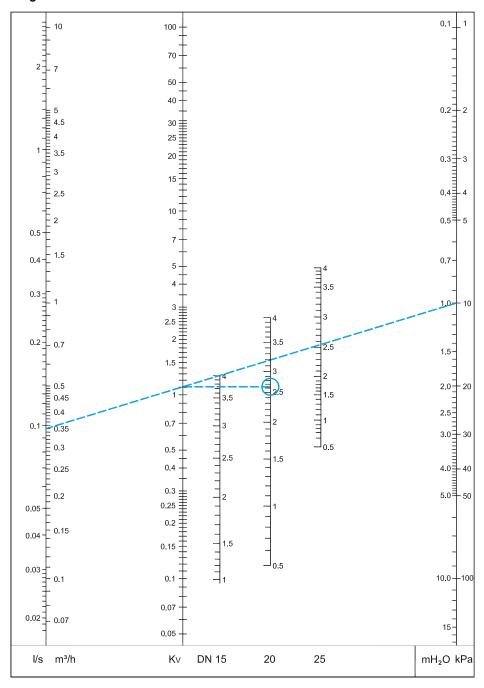
No de tours	DN 15	DN 20	DN 25
0.5	-	0,118	0,521
1	0,099	0,248	0,728
1.5	0.155	0,447	1,00
2	0,277	0,709	1.26
2.5	0,452	1,03	1,81
3	0,678	1,34	2,65
3.5	0,962	1,93	3,85
4	1,27	2,63	4,91

Dimensionnement

Lorsque le Δp et le débit sont connus, utiliser la formule pour calculer la valeur Kv ou voir diagramme.

$$Kv = 0.01 \frac{q}{\sqrt{\Delta p}} \qquad q \; l/h, \, \Delta p \; kP \epsilon$$

$$Kv = 36 \frac{q}{\sqrt{\Delta p}} \qquad q \text{ l/s, } \Delta p \text{ kPa}$$


Exemple

Débit = 0,35 m 3 /h, Δ pV = 10 kPa.

- 1. Aller au diagramme de dimensionnement. (Pour calculer le Kv avec la formule, aller directement à l'étape 4).
- 2. Tracer une ligne droite entre 0,35 m³/h et 10 kPa.
- 3. Relever le Kv là où la ligne croise l'axe Kv. Dans cet exemple, Kv=1,1
- 4. Tracer une ligne horizontale à partir de Kv 1,1. Celle-ci va croiser les valeurs de réglage des vannes utilisables. Dans cet exemple 3,7 pour DN 15, 2,6 pour DN 20 et 1,7 pour DN 25.
- 5. Choisissez la plus petite des valeurs (avec une marge de sécurité). Dans cet exemple : DN 20.

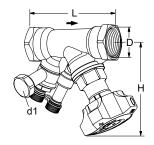
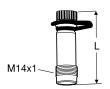


Diagramme de dimensionnement

Articles

Avec raccord de vidange

Vanne taraudée.


Taraudage selon norme ISO 228. Longueur de taraudage selon norme ISO 7/1.

DN	D	L	Н	Kvs	Kg	No d'article
d1 = G3/4						
15*	G1/2	84	100	1,27	0,56	52 873-615
20*	G3/4	94	100	2,63	0,64	52 873-620
25	G1	105	105	4,91	0,77	52 873-625

→ = Direction du débit

Kvs = débit en m³/h pour une perte de charge de 1 bar, la vanne étant complètement ouverte. *) Peuvent être raccordés à des tubes lisses à l'aide du raccord à compression KOMBI.

Accessoires

Prise de pression

Maxi. 120°C (intermittent 150°C) AMETAL®/EPDM

L	No d'article		
44	52 179-014		
103	52 179-015		

Rallonge pour point de mesure M14x1

Convient lors de l'utilisation d'un calorifuge.

AMETAL®

d	L	No d'article
M14x1	71	52 179-016

Prise de pression, rallonge 60 mm

(pas pour 52 179-000/-601) Peut être installée sans devoir vidanger.

AMETAL®/Acier inox/EPDM

L	No d'article
60	52 179-006

Poignée

Complète

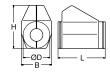
No d'article 52 186-007

Plaque de marquage

No d'article
52 161-990

Clé Allen

[mm]		No d'article
3	Préréglage	52 187-103
5	Vidange	52 187-105



Raccord à compression KOMBI

Max 100°C (Pour plus d'information voir documentation KOMBI.)

Filetage de l'écrou de compression	Diam. ext. du tube	No d'article
G1/2	10	53 235-109
G1/2	12	53 235-111
G1/2	14	53 235-112
G1/2	15	53 235-113
G1/2	16	53 235-114
G3/4	15	53 235-117
G3/4	18	53 235-121
G3/4	22	53 235-123

Calorifuge préformé

Pour chauffage/refroidissement

Matériaux: EPP

Classe de résistance au feu: B2 (DIN 4102) Température de service maxi: 120°C

(intermittent 140°C)

Température de service mini: 12°C, -8°C en réalisant un joint entre les 2 moitiés.

Pour DN	L	Н	D	В	No d'article
10-20	155	135	90	103	52 189-615
25	175	142	94	103	52 189-625
32	195	156	106	103	52 189-632
40	214	169	108	113	52 189-640
50	245	178	108	114	52 189-650

