

Compresso Connect

Sistema de manutenção de pressão com compressores

Para sistemas de aquecimento até 12 MW e de resfriamento até 18 MW

Compresso Connect

Compresso é um sistema de pressurização de precisão com compressores para sistema de aquecimento, resfriamento e solar. É especialmente adequado a situações em que compacidade e precisão são necessários. A faixa de capacidade do sistema fica entre a pressurização com Statico e Transfero. O novo painel de controle do **BrainCube Connect** permite um novo nível de conectividade, permitindo a comunicação com o sistema BMS, outros BrainCubes bem como operação remota do sistema de pressurização através de visualização ao vivo.

 Design melhorado para operação mais fácil e confortável

Resistente display 3.5" iluminado, touch e colorido. Menu de operação fácil e intuitivo. Interface com controle remoto e status ao vivo. Painel de controle do BrainCube Connect integrado ao TecBox.

 Acesso remoto e solução de problemas

Acesso remoto e suporte de comissionamento, reduz a necessidade de pessoal altamente qualificado para performar as operações. Tempo de resposta mais rápido, redução de custos de reparos. Registro de dados para verificação de desempenhos do Sistema.

Conectividade de última geração
Conevões padronizadas ao to RMS

Conexões padronizadas ao to BMS e dispositivos remotos disponíveis (RS485, Ethernet, USB) permitindo economia de tempo durante a instação e serviço e unidadde controlável. Comunicação com até 8 BrainCubes numa rede mestre/ escravo.

Descrição técnica - Unidade de controle TecBox

Aplicações:

Sistema de água de aquecimento, resfriamento e solar.

Para sistema de acordo com EN 12828, SWKI HE301-01, sistemas solares de acordo com EN 12976, ENV 12977 com proteção para excesso de temperatura no campo, em caso de falta de energia.

Pressão:

Pressão admissível mínima, PSmin: 0 bar Pressão admissível máxima, PS: ver Artigos

Temperatura:

Máx. temperatura ambiente admissível, $t_{\mbox{\tiny Amax}} \!\! : 40\mbox{\ensuremath{}^{\circ}\mbox{\ensuremath{}^{\circ}\mbox{\ensuremath{}^{\circ}}\mbox{\ensuremath{}^{\circ}}\mbox{\ensuremath{}^{\circ}}\mbox{\ensuremath{}^{\circ}\mbox{\ensuremath{}^{\circ}}\mbox{\ensuremath{}^{\circ}}\mbox{\ensuremath{}^{\circ}\mbox{\ensuremath{}^{\circ}}\mbox{\ensuremath{}^{\circ}}\mbox{\ensuremath{}^{\circ}\mbox{\ensuremath{}^{\circ}}\mbox{\ensuremath{}^{\circ}}\mbox{\ensuremath{}^{\circ}\mbox{\ensuremath{}^{\circ}}\mbox{\ensuremath{}^{\circ}\mbox{\ensuremath{}^{\circ}\mbox{\ensuremath{}^{\circ}}\mbox{\ensuremath{}^{\circ}}\mbox{\ensuremath{}^{\circ}\mbox{\ensuremath{}^{\circ}\mbox{\ensuremath{}^{\circ}}\mbox{\ensuremath{}^{\circ}\mbox{\ensuremath{}^{\circ}}\mbox{\ensuremath{}^{\circ}}\mbox{\ensuremath{}^{\circ}\mbox{\ensuremath{}^{\circ}\mbox{\ensuremath{}^{\circ}\mbox{\ensuremath{}^{\circ}}\mbox{\ensuremath{}^{\circ}}\mbox{\ensuremath{}^{\circ}\mbox{\ensuremath{}^{\circ}\mbox{\ensuremath{}^{\circ}\mbox{\ensuremath{}^{\circ}\mbox{\ensuremath{}^{\circ}\mbox{\ensuremath{}^{\circ}}\mbox{\ensuremath{}^{\circ}}\mbox{\ensuremath{}^{\circ}\mbox{\$

Min. temperatura ambiente admissível, t_{Amin}: 5°C

Precisão:

Precisão do controle da pressão ± 0,1 bar.

Tensão de alimentação:

Compresso C10: 1 x 230 V (-6% + 10%), 50/60 Hz

Compresso C15: 1 x 230 V (-6% + 10%), 50 Hz

Consumo elétrico:

Ver Artigos.

Classe de proteção:

IP 22 de acordo com EN 60529

Nível de pressão sonora:

53-62 dB(A) / 1-10 bar

Materiais:

Principais: aco, latão e bronze

Transporte e armazenamento:

Em lugares secos e livres de gelo.

Padrão:

Construído de acordo com MD 2006/42/EC, Annex II 1.A EMC-D. 2014/30/EU

Descrição técnica - Tanque de expansão

Aplicações:

Só em conjunto com Unidade de controle . Ver aplicações na descrição técnica - Unidade de controle.

Ambientes:

Fluido do sistema não agressivo e não tóxico. Anticongelante à base de etileno ou propilenoglicol, até 50%.

Pressão:

Pressão admissível mínima, PSmin: 0 bar Pressão admissível máxima, PS: ver Artigos

Temperatura:

Máx. temperatura admissível na bolsa $t_{\rm Bmax}$: 70°C Min. temperatura admissível na bolsa, $t_{\rm Bmin}$: 5°C

De acordo com norma Europeia de equipamento pressurizados PED:

Máx. temperatura admissível, t_{Smax} : 120°C Min. temperatura admissível, t_{Smin} : -10°C

Materiais:

Aço. Cor berílio.

Bolsa de borracha butílica hermética de acordo com EN 13831.

Transporte e armazenamento:

Em lugares secos e livres de gelo.

Padrão:

Construído de acordo com PED 2014/68/EU.

Garantia:

Compresso CG, CG...E: 5 anos de garantia para a bolsa de butil hermética.

Compresso CU, CU...E: 5 anos de garantia para o tanque.

Função, Equipamento, Características

Unidade de controle TecBox

- Controle do Connect BrainCube para uma operação de sistema inteligente, totalmente automática e segura. Auto otimização com função de memória.
- Registro de dados e análise de sistemas, memória de mensagem cronológica com definição de prioridades, controlável remotamente com visualização ao vivo, auto-teste periódico automático.
- Tela de toque colorida resistiva de 3,5" TFT iluminada. Interface baseada na web com controle remoto e visualização ao vivo. Layout do menu fácil ao usuário, orientado para operação com slide e operação de toque, guia de procedimento de inicialização passo a passo e ajuda direta em janelas pop-up. Representação de todos os parâmetros relevantes e status da operação em texto sem formatação e/ ou gráficos, multilingues.
- Operação silenciosa.
- Tomada de água opcional que permite monitoramento e controle através de uma unidade Pleno P.
- Tampa de metal de alta qualidade.
- Posição no chão.
- Incluindo kit de montagem para a conexão do Tecbox com o tanque primário.

Tanque de expansão

- Bolsa butil hermética (CU, CU...E, CG, CG...E), substituível (CG, CG...E).
- Incluso tubo flexível para a conexão do lado da água e válvula de bloqueio com válvula de esfera para drenagem rápida (CU, CG)
- Inclusos tubos flexíveis para a conexão hidráulica e válvula de bloqueio e dreno com válvula esfera para drenagem rápida (CU...E, CG...E).
- Revestimento interno para proteção contra corrosão e danos à bolsa (CG, CG...E).
- Abertura de inspeção endoscópica para inspeções internas (CU, CU...E). Duas flanges para inspeções internas (CG, CG, E)
- Bolsa pode ter purga no alto, dreno de condensação na parte inferior.
- Anel superior para montagem vertical.

Cálculo

Manutenção de pressão para sistemas TAZ ≤ 100° C

Cálculo seguindo EN 12828, SWKI HE301-01 *).

Para todas as aplicações especiais como sistemas solares, sistemas de aquecimento distritais, sistemas com temperaturas superiores a 100°C, sistemas de resfriamento com temperaturas abaixo de 5°C, por favor, use o catálogo do software HySelect ou entre em contato conosco.

Equações gerais

Vs	Capacidade volumétrica do	Aquecimento	Vs = vs · Q	VS	Capacidade específica da água, tabela 4.
	sistema			Q	Capacidade calorífica instalada.
			Vs= Conhecido		Volume de água do sistema conhecido
		Resfriamento	Vs= Conhecido		Volume de água do sistema conhecido
Ve	Volume de expansão	EN 12828	Ve = e · (Vs+Vhs)	e, ehs	Coeficiente de expansão para t _{máx} , tabela 1
		Resfriamento	Ve = e · (Vs+Vhs)	e, ehs	Coeficiente de expansão para t _{máx} , tabela 1 ⁷⁾
		SWKI HE301-01	$Ve = e \cdot Vs \cdot X^{\scriptscriptstyle (1)} + ehs \cdot Vhs$	е	Coeficiente de expansão para (ts _{máx} + tr)/2, tabela 1
		Aquecimento		ehs	Coeficiente de expansão para t _{máx} , tabela 1
		SWKI HE301-01	$Ve = e \cdot Vs \cdot X^{\scriptscriptstyle (1)} + ehs \cdot Vhs$	e, ehs	Coeficiente de expansão para t _{máx} , tabela 1 ⁷⁾
		Resfriamento			
√wr	Reserva de água	EN 12828,	Vwr ≥ 0,005 · Vs ≥ 3 L		
		Resfriamento			
		SWKI HE301-01	Vwr é considerado no Ve		
			com o coeficiente X		
00	Pressão mínima 2)	EN 12828,	p0 = Hst/10 + 0,2 bar ≥ pz	Hst	Altura Estática
	Limite mínimo do valor para a	Resfriamento		pz	Pressão mínima exigida do equipamento para bombas
	manutenção de pressão				ou caldeiras
		SWKI HE301-01	p0 = Hst/10 + 0,3 bar ≥ pz		
ра	Pressão inicial		pa ≥ p0 + 0,3 bar		
	Mais baixa pressão para uma				
	ótima manutenção de pressão				
эе	Pressao final			psvs	Sistema de valvula de seguranca de pressao de resposta
	Entrada superior para uma otima			dpsvs _c	Tolerancia de fechamento da valvula de seguranca
	manutencao de pressao	EN 12828	pe ≤ psvs - dpsv _c	dpsvs _c	0,5 bar para psvs ≤ 5 bar 4)
				dpsvs _c	0,1 · psvs para psvs > 5 bar ⁴)
		Resfriamento	pe ≤ psvs - dpsv _c	dpsvs _c	0,6 bar para psvs ≤ 3 bar 4)
				dpsvs _c	0,2 · psvs para psvs > 3 bar ⁴)
		SWKI HE301-01	pe ≤ psvs/1,15 e		psvs 4)
		Aquecimento	pe ≤ psvs - 0,3 bar		
		SWKI HE301-01	pe ≤ psvs/1,3 e		psvs 4)
		refrigeração,	pe ≤ psvs - 0,6 bar		
		solar, bombas			
		de calor			

Compresso

ре	Pressão final		pe=pa+0,2	
VN	Volume nominal do vaso de	EN 12828,	VN ≥ (Ve + Vwr + 2 ³⁾) · 1,1	
	expansão 5)	Resfriamento		
		SWKI HE301-01	VN ≥ (Ve + 2 ³) · 1,1	
TecBo	ТесВох		Q = f(Hst)	>> Seleção rápida do Compresso

¹⁾ Aquecimento, Resfriamento, Solar: Q \leq 10 kW: X = 3 | 10 kW < Q \leq 150 kW: X = (87-0,3 \cdot Q)/28 | Q > 150 kW: X = 1,5 kW: X = 1,5

Sistemas de sonda geotérmica: X = 2,5

²⁾ A fórmula para a pressão mínima p0 é aplicável à instalação de manutenção da pressão no lado da sucção da bomba de circulação. No caso de uma instalação na descarga da bomba, o p0 é para ser aumentada pela altura manométrica da bomba Δp.

³⁾ Adicionar 2 litros quando um Vento está instalado no sistema.

⁴⁾ As válvulas de segurança devem trabalhar dentro desses limites. Use apenas válvulas de segurança certificadas e testadas por componentes do tipo H, DGH para sistemas de aquecimento e tipo

F, DGF para sistemas de refrigeração. Para instalações de acordo com SWKI HE301-01, apenas devem ser utilizadas válvulas de segurança do tipo de homologação DGF e DGH.

⁵⁾ Selecione um tanque que tenha um volume igual ou maior.

⁷⁾ Máx. temperatura de paralisação do sistema, geralmente 40 ° C para aplicações de resfriamento e sondas geotérmicas com regeneração do solo, 20 ° C para outras sondas geotérmicas.

^{*)} SWKI HE301-01: Válido para a Suiça

Nosso programa de cálculo HySelect baseia-se em um avançado método de cálculo e base de dados. Portanto, os resultados podem ser diferentes.

Tabela 1: coeficiente de expansão e

t (TAZ, ts _{ma}	_x , tr, ts _{min}), °C	20	30	40	50	60	70	80	90	100	105	110
e Água	= 0 °C	0,0016	0,0041	0,0077	0,0119	0,0169	0,0226	0,0288	0,0357	0,0433	0,0472	0,0513
e % Peso I	MEG*											
30 %	= -14,5 °C	0,0093	0,0129	0,0169	0,0224	0,0286	0,0352	0,0422	0,0497	0,0577	0,0620	0,0663
40 %	= -23,9 °C	0,0144	0,0189	0,0240	0,0300	0,0363	0,0432	0,0505	0,0582	0,0663	0,0706	0,0750
50 %	= -35,6 °C	0,0198	0,0251	0,0307	0,0370	0,0437	0,0507	0,0581	0,0660	0,0742	0,0786	0,0830
e %Peso N	/IEG**											
30 %	= -12,9 °C	0,0151	0,0207	0,0267	0,0333	0,0401	0,0476	0,0554	0,0639	0,0727	0,0774	0,0823
40 %	= -20,9 °C	0,0211	0,0272	0,0338	0,0408	0,0481	0,0561	0,0644	0,0731	0,0826	0,0873	0,0924
50 %	= -33,2 °C	0,0288	0,0355	0,0425	0,0500	0,0577	0,0660	0,0747	0,0839	0,0935	0,0985	0,1036

Tabela 4: vs aprox. capacidade de água *** de centrais de aquecimentos referentes à capacidade de calor instalada Q

ts _{max} tr	°C	90 70	80 60	70 55	70 50	60 40	50 40	40 30	35 28
Radiadores	vs litro/kW	14,0	16,5	20,1	20,6	27,9	36,6	-	-
Radiadores planos	vs litro/kW	9,0	10,1	12,1	11,9	15,1	20,1	-	-
Convectores	vs litro/kW	6,5	7,0	8,4	7,9	9,6	13,4	-	-
Tratadores de ar	vs litro/kW	5,8	6,1	7,2	6,6	7,6	10,8	-	-
Piso aquecido	vs litro/kW	10,3	11,4	13,3	13,1	15,8	20,3	29,1	37,8

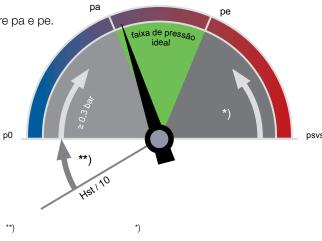
^{*)} MEG = Monoetileno Glicol

Tabela 5: Valores padrão DN e para tubos de expansão com Statico e Compresso

Comprimento até aproximadamente 30 m	DNe	20	25	32	40
Aquecimento :					
EN 12828	Q kW	1000	1700	3000	3900
Resfriamento :					
ts _{max} ≤ 50 °C	Q kW	1600	2700	4800	6300

Temperaturas

ts _{max}	Temperatura máxima do sistema							
THEN	Temperatura máxima para o cálculo do volume de expansão. Para sistemas de aquecimento, o dimensionamento da temperatura de							
	fluxo em que um sistema de aquecimento será operado com a mais baixa temperatura exterior a ser assumida (temperatura exterior							
	de acordo com a norma EN 12828). Para sistemas de resfriamento, onde o máximo de temperatura é conseguido devido ao modo de							
	funcionamento ou paragem e para sistemas de energia solar, onde a temperatura de evaporação deve ser evitada.							
ts _{min}	Temperatura mais baixa do sistema							
	Temperatura mais baixa para o cálculo de volume de expansão. A temperatura mais baixa do sistema é igual ao ponto de congela-							
	mento. É dependente da porcentagem de aditivos anti-congelantes. Para a água sem aditivos t _{min} = 0.							
tr	Temperatura de Retorno							
	Temperatura de retorno do sistema de aquecimento com a temperatura exterior mais baixa a ser assumida (temperatura exterior de							
	acordo com a norma EN 12828).							
TAZ	Temperatura de segurança limitadora controlador de temperatura de segurança Limite de temperatura							
	Dispositivo de segurança de acordo com a norma EN 12828 para a proteção da temperatura dos geradores de calor. Se a temperatura							
	limite for excedida, o conjunto de aquecimento é desligado. Se os limitadores estão bloqueados, os controladores automaticamente							
	liberam o fornecimento de calor se a temperatura estiver abaixo. Valor de ajuste para os sistemas de acordo com a EN 12828 ≤ 110 ° C.							


^{**)} MPG = Monopropileno Glicol

^{***)} Capacidade de água = gerador de calor + rede de distribuição + emissores de calor

Manutenção da pressão de precisão

Ar controlado com Compresso minimizam a variação de pressão entre pa e pe.

 \pm 0,1 bar

EN 12828, Solar, \geq 0,2 bar EN 12828: \geq psvs \cdot 0,9 \geq 0,5 bar

Resfriamento:

Solar, Resfriamento: $\geq psvs \cdot 0.8 \geq 0.6$ bar

p0 Pressão mínima

Compresso

pelo BrainCube.

p0 e os pontos de ligação são calculados

pa Pressão inicial

Compresso

Se a pressão do sistema \acute{e} < pa, então o compressor parte.

pe Pressão final

Compresso

pe é ultrapassado pelo aquecimento, então a válvula solenoide de ar «abre». pe = pa + 0,2

Seleção rápida

Sistemas de aquecimento TAZ ≤ 100 °C, sem adição de anticongelante, EN 12828

Q [kW]		Tec	Вох			Tanque	Primário			
	1 compressor	2 compressores	1 compressor	2 compressores	Radi	adores	Radiador	es planos		
	C 10.1	C 10.2	C 15.1	C 15.2	90 70	70 50	90 70	70 50		
		Altura Está	tica Hst [m]		Volume Nominal VN [litros]					
≤ 300	47,1	47,1	82,4	82,4	200	200	200	200		
400	47,1	47,1	82,4	82,4	300	300	200	200		
500	47,1	47,1	82,4	82,4	300	300	200	200		
600	46,0	47,1	81,2	82,4	400	400	300	300		
700	42,0	47,1	72,8	82,4	500	500	300	300		
800	38,5	47,1	66,0	82,4	500	500	400	300		
900	35,6	47,1	60,4	82,4	600	600	400	400		
1000	33,0	47,1	55,7	82,4	600	600	400	400		
1100	30,8	46,7	51,6	82,4	800	800	500	400		
1200	28,7	44,3	48,0	82,4	800	800	500	500		
1300	26,9	42,1	44,8	82,4	800	800	500	500		
1400	25,2	40,2	42,0	78,1	1000	1000	600	500		
1500	23,7	38,4	39,5	74,1	1000	1000	600	600		
2000	17,6	31,3	29,7	59,0	1500	1500	800	800		
2500	13,1	26,3	23,0	48,9	1500	1500	1000	1000		
3000	9,6	22,4	18,0	41,5	2000	2000	1500	1500		
3500	-	19,3	14,1	35,7	3000	3000	1500	1500		
4000	-	16,7	10,9	31,1	3000	3000	2000	1500		
4500	-	14,5	8,2	27,3	3000	3000	2000	2000		
5000	-	12,6	-	24,1	3000	3000	2000	2000		
5500	-	10,9	-	21,3	4000	4000	3000	2000		
6000	-	9,4	-	18,8	4000	4000	3000	3000		
6500	-	8,0	-	16,7	4000	4000	3000	3000		
7000	-	-	-	14,7	5000	5000	3000	3000		
8000	-	-	-	11,4	5000	5000	4000	3000		
9000	-	-	-	8,6			4000	4000		
10000	-	-	-	6,3			4000	4000		

Exemplo

Q = 700 kWRadiadores $90 \mid 70 \text{ °C}$ TAZ = 100 °CHst = 35 mpsvs = 6 bar

Selecionado: TexBox C 10.1-6

Tanque Primário CU 500.6

Parâmetros do BrainCube:

Hst = 35 m $TAZ = 100 \, ^{\circ}\text{C}$

Checagem das válvulas de segurança psvs:

para TAZ = 100 °C

EN 12828: psvs: $(35/10 + 0.7) \cdot 1.11 = 4.66 < 6$ o.k.

Valores de ajuste

Para TAZ, Hst e psv dentro de <Parameter> menu do BrainCube.

EN 12828			TAZ = 100 °C	TAZ = 105 °C	TAZ = 110 °C	
	Checagem da psv:	para psv ≤ 5 bar	psv ≥ 0,1 · Hst + 1,2	psv ≥ 0,1 · Hst + 1,4	psv ≥ 0,1 · Hst + 1,6	
		para psv > 5 bar	$psv \ge (0,1 \cdot Hst + 0,7) \cdot 1,11$	$psv \ge (0,1 \cdot Hst + 0,9) \cdot 1,11$	$psv \ge (0,1 \cdot Hst + 1,1) \cdot 1,11$	

Equipamento

Tubos de Expansão

De acordo com a tabela 5. Com múltiplos tanques deve ser calculado dependendo da capacidade de cada tanque.

Válvula de Bloqueio DLV

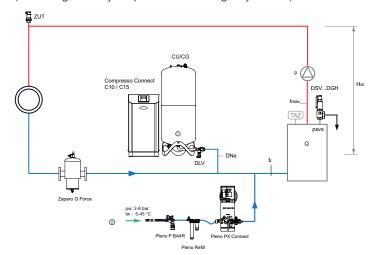
Incluído no volume de fornecimento.

Zeparo

Purgador ZUT ou ZUP em cada ponto alto para purga durante o enchimento e durante o processo de drenagem. Separador de sujeira e magnetita em cada sistema, em cada retorno para o gerador de calor. Se não há um degasificador central instalado (por exemplo Vento V Connect), um separador de micro-bolhas pode ser instalado no fluxo principal se possível antes da bomba de circulação.

A altura estática Hst,, de acordo com a tabela acima do separador de microbolhas não deve ser excedida.

ts _{max} °C	90	80	70	60	50	40	30	20	10
Hst _m mWs	15,0	13,4	11,7	10,0	8,4	6,7	5,0	3,3	1,7


Exemplo de aplicação

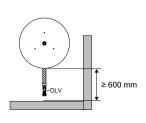
Compresso C 10.1 Connect

TecBox com 1 compressor de piso ao lado do tanque primário, manutenção da pressão de precisão de \pm 0,1 bar com o repositor de água Pleno P

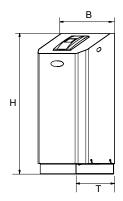
Para sistemas de Aquecimento de aprox. 6 500 kW

(Pode exigir alterações para atender a legislação local)

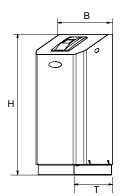
- 1. Tanque primário CU
- Conexão de reposição de água, pw ≥ p0 + 1,7 bar, (max. 10 bar)


Zeparo G-Force separador de sujeira ciclônico com haste magnética ZGM no retorno.

Zeparo ZUT para purga automática durante enchimento e durante a drenagem.


Outros acessórios, produtos e detalhes de seleção: Catálogo técnico Pleno, Zeparo e Acessórios

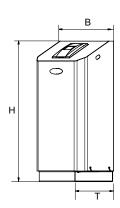
Instalação


Unidade de controle TecBox, Compresso C 10 Connect

Compresso C 10.1 Connect

Precisão do controle da pressão \pm 0,1 bar. 1 compressor. Coletor com 1 válvula de alívio e válvula de segurança.

Tipo	PS	В	н	Т	m	Pel	Código Item
	[bar]				[kg]	[kW]	
C 10.1-3.0	3	520	1060	350	21	0,6	810 1420
C 10.1-3.75	3,75	520	1060	350	21	0,6	810 1421
C 10.1-4.2	4,2	520	1060	350	21	0,6	810 1422
C 10.1-5.0	5	520	1060	350	21	0,6	810 1423
C 10.1-6.0	6	520	1060	350	21	0,6	810 1424

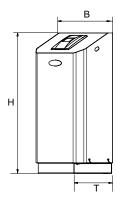

Compresso C 10.2 Connect

Precisão do controle da pressão ± 0,1 bar.

2 compressores. Coletor com 1 válvula de alívio e válvula de segurança. A comutação é dependente do tempo e da carga.

Tipo	PS	В	н	T	m	Pel	Código Item
	[bar]				[kg]	[kW]	
C 10.2-3.0	3	520	1060	350	35	1,2	810 1460
C 10.2-3.75	3,75	520	1060	350	35	1,2	810 1461
C 10.2-4.2	4,2	520	1060	350	35	1,2	810 1462
C 10.2-5.0	5	520	1060	350	35	1,2	810 1463
C 10.2-6.0	6	520	1060	350	35	1,2	810 1464

Unidade de controle TecBox, Compresso C 15 Connect



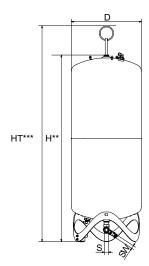
Compresso C 15.1 Connect

Precisão do controle da pressão ± 0,1 bar.

1 compressor. Coletor com 1 válvula de alívio e válvula de segurança.

Tipo	PS [bar]	В	Н	Т	m [kg]	Pel [kW]	Código Item
C 15.1-6.0	6	520	1060	350	42	1,3	810 1434
C 15.1-10.0	10	520	1060	350	42	1,3	810 1435

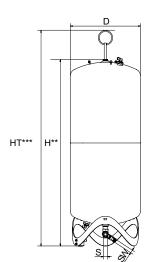
Compresso C 15.2 Connect


Precisão do controle da pressão ± 0,1 bar.

2 compressores. Coletor com 1 válvula de alívio e válvula de segurança. A comutação é dependente do tempo e da carga.

Tipo	PS [bar]	В	Н	Т	m [kg]	Pel [kW]	Código Item
C 15.2-6.0	6	520	1060	350	62	2,6	810 1474
C 15.2-10.0	10	520	1060	350	62	2,6	810 1475

T = Profundidade do dispositivo

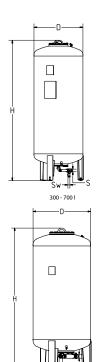

Tanque de expansão

Compresso CU

Tanque primário. Pé de medição para monitoramento do volume. Inclusos tubos flexíveis para a conexão hidráulica e válvula de bloqueio e dreno com válvula esfera para drenagem rápida,

Tipo	VN [I]	D	H**	HT***	m [kg]	S	Sw	Código Item
6 bar (PS)								
CU 200.6	200	500	1340	1565	34	Rp1	G3/4	712 1000
CU 300.6	300	560	1469	1690	40	Rp1	G3/4	712 1001
CU 400.6	400	620	1532	1760	58	Rp1	G3/4	712 1002
CU 500.6	500	680	1627	1858	67	Rp1	G3/4	712 1003
CU 600.6	600	740	1638	1873	80	Rp1	G3/4	712 1004
CU 800.6	800	740	2132	2360	98	Rp1	G3/4	712 1005

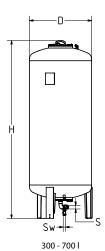
Compresso CU...E


Tanque secundário. Inclusos tubos flexíveis para a conexão hidráulica, válvula de bloqueio e dreno com válvula esfera para drenagem rápida e kit de montagem para a conexão de ar do tanque.

Tipo	VN [I]	D	H**	HT***	m [kg]	S	Sw	Código Item
6 bar (PS)								
CU 200.6 E	200	500	1340	1565	33	Rp1	G3/4	712 2000
CU 300.6 E	300	560	1469	1690	39	Rp1	G3/4	712 2001
CU 400.6 E	400	620	1532	1760	57	Rp1	G3/4	712 2002
CU 500.6 E	500	680	1627	1858	66	Rp1	G3/4	712 2003
CU 600.6 E	600	740	1638	1873	79	Rp1	G3/4	712 2004
CU 800.6 E	800	740	2132	2360	97	Rp1	G3/4	712 2005

VN = Volume Nominal

^{**)} Tolerância 0 /-100.

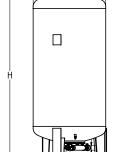

^{***)} Altura max. quando o vaso está inclinado incluindo olhal de elevação

Compresso CG

Tanque primário. Pé de medição para monitoramento do volume. Inclusos tubos flexíveis para a conexão hidráulica e válvula de bloqueio e dreno com válvula esfera para drenagem rápida. Corrosão -Revestimento interno protegido para desgaste mínimo da bolsa.

Tipo*	VN [i]	D	H**	H***	m [kg]	S	Sw	Código Item
6 bar (PS)								
CG 300.6	300	500	1823	1839	140	Rp1	G3/4	712 1006
CG 500.6	500	650	1864	1893	190	Rp1	G3/4	712 1007
CG 700.6	700	750	1894	1931	210	Rp1	G3/4	712 1008
CG 1000.6	1000	850	2097	2132	290	Rp1 1/2	G3/4	712 1009
CG 1500.6	1500	1016	2248	2295	400	Rp1 1/2	G3/4	712 1010
CG 2000.6	2000	1016	2746	2785	680	Rp1 1/2	G3/4	712 1015
CG 3000.6	3000	1300	2850	2936	840	Rp1 1/2	G3/4	712 1012
CG 4000.6	4000	1300	3496	3547	950	Rp1 1/2	G3/4	712 1013
CG 5000.6	5000	1300	4134	4183	1050	Rp1 1/2	G3/4	712 1014
10 bar (PS)								
CG 300.10	300	500	1854	1866	160	Rp1	G3/4	712 3000
CG 500.10	500	650	1897	1921	220	Rp1	G3/4	712 3001
CG 700.10	700	750	1928	1961	250	Rp1	G3/4	712 3002
CG 1000.10	1000	850	2097	2132	340	Rp1 1/2	G3/4	712 3003
CG 1500.10	1500	1016	2285	2331	460	Rp1 1/2	G3/4	712 3004
CG 2000.10	2000	1016	2779	2819	760	Rp1 1/2	G3/4	712 3009
CG 3000.10	3000	1300	2879	2942	920	Rp1 1/2	G3/4	712 3006

1000 - 5000 I


bolsa.

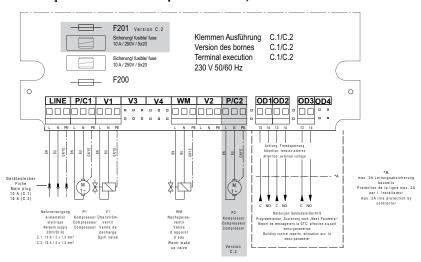
Compresso CG...E

para conexão do ar dos tanques. Corrosão - Revestimento interno protegido para desgaste mínimo da

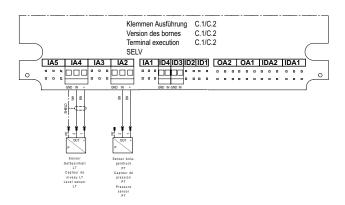
Tanque secundário. Inclui válvula de bloqueio com válvula globo pra rápida drenagem, kit de montage

Tipo*	VN	D	H**	H***	m	S	Sw	Código Item
	[1]				[kg]			
6 bar (PS)								
CG 300.6 E	300	500	1823	1839	140	Rp1	G3/4	712 2006
CG 500.6 E	500	650	1864	1893	190	Rp1	G3/4	712 2007
CG 700.6 E	700	750	1894	1931	210	Rp1	G3/4	712 2008
CG 1000.6 E	1000	850	2097	2132	290	Rp1 1/2	G3/4	712 2009
CG 1500.6 E	1500	1016	2248	2295	400	Rp1 1/2	G3/4	712 2010
CG 2000.6 E	2000	1016	2746	2785	680	Rp1 1/2	G3/4	712 2015
CG 3000.6 E	3000	1300	2850	2936	840	Rp1 1/2	G3/4	712 2012
CG 4000.6 E	4000	1300	3496	3547	950	Rp1 1/2	G3/4	712 2013
CG 5000.6 E	5000	1300	4134	4183	1050	Rp1 1/2	G3/4	712 2014
10 bar (PS)								
CG 300.10 E	300	500	1854	1866	160	Rp1	G3/4	712 4000
CG 500.10 E	500	650	1897	1921	220	Rp1	G3/4	712 4001
CG 700.10 E	700	750	1928	1961	250	Rp1	G3/4	712 4002
CG 1000.10 E	1000	850	2097	2132	340	Rp1 1/2	G3/4	712 4003
CG 1500.10 E	1500	1016	2285	2331	460	Rp1 1/2	G3/4	712 4004
CG 2000.10 E	2000	1016	2779	2819	760	Rp1 1/2	G3/4	712 4009
CG 3000.10 E	3000	1300	2879	2942	920	Rp1 1/2	G3/4	712 4006

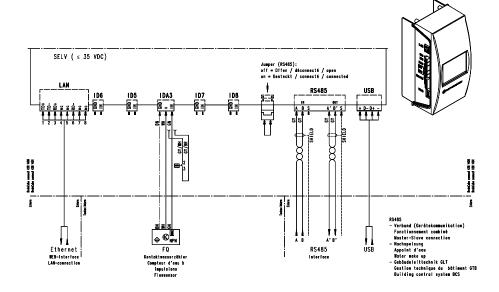
1000 - 5000 I


VN = Volume Nominal

- *) Aplicações > 10 bar e tanques especiais mediante solicitações.
- **) Tolerância 0 /-100.
- ***) Altura max. quando o vaso está inclinado


Esquema elétrico

230 V / 50/60 Hz


Alimentação elétrica do Compresso C 10.1, C 10.2

Conexões de extra baixas de tensão de segurança

Comunicação

Os produtos, textos, fotografias, gráficos e diagramas contidos nesta publicação poderão ser alterados pela IMI Hydronic Engineering sem aviso prévio ou justificativa. Para obter informações mais atualizadas sobre nossos produtos e suas especificações, visite www.imi-hydronic.com.br ou contate a IMI Hydronic Engineering.