

Life Science

IMI FAS

16 mm FLATPROP Direct acting proportional valve

- 2/2 NC proportional valve
- High precision miniature proportional valve
- Flat plunger and spring for frictionless operation
- Highly repeatable with over 100 million cycles
- Accurate control of flows ranging from a few ml/min to 80 l/min

Technical features

Medium:

Air, oxygen or neutral gases

Orifices:

Orifice sizes 0,8 to 2,0 mm (0,03" to 0,078")

Filtration:

A filtration of 10 micrometer is required before the inlet for valves with an orifice size comprised between 0,8 to 2,0 mm

Operation:

Direct acting 2-way valve Normally closed

Hysteresis:

Typical: <10% of full scale current

Cleanliness:

Oxygen compatible

Operating pressure: 0 ... 12 bar (0 ... 174 psi)

Mounting: Cartridge

Size:

16 mm

Life expectancy: ≥ 100 Mio. cycles

Internal & external leakage: < 10-2 mbar l/s (≈0.6 ml/min) at

max

Protection class (acc. to EN60529):

IP51

Weight:

< 50 g (0,11 lbs)

Ambient/media temperature: +10 ... +50°C (+50 ... +122°F)

Materials:

Body: Stainless steel only or stainless steel/brass PEEK (only when mounted on sub-based)

Seal: FPM, NBR, EPDM

Manifolds

Contact your local fluid control specialist for information about our manifolding capabilities which include laminated polymer manifolds.

Electrical details

Voltage/frequency	See technical data -standard coils
Power consumption	See technical data -standard coils
Insulation class	F (155°C)
Electrical insulation	1000 V a.c.
Protection degree	IP51
Duty cycle	100%
Electrical connection	300 mm A WG24 flying leads

Following options on request

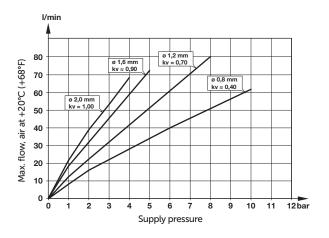
Other orifice size available
Specific coils
Wider temperature range
OEM specification
Lower leak rate
Manifold mount

File code: LS_DS_FLATPROP_en/04/24

Technical data - standard models

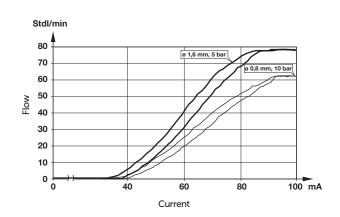
Symbol	Orifice	Operating pressure	kv factor *1)	Current	Resistance	Body Material	Seal Material	Model
	(mm)	(bar)		(mA)	(Ω)			
	0,8	0 10	0,33	211	57	Stainless Steel	FPM	12-216C-01-41+D3WFIL+BED
12210	1,2	0 8	0,55	211	57	Stainless Steel	FPM	12-216C-02-41+D3WFIL+BED
T T W	1,6	0 5	0,8	211	57	Stainless Steel	FPM	12-216C-03-41+D3WFIL+BED
'	2,0	0 4	1	211	57	Stainless Steel	FPM	12-216C-04-41+D3WFIL+BED

^{*1)} Cv = 0,07 kv


Technical data - standard coils

Valve orifice	Coil resistance at 20°C (+68°F) <u>+</u> 3% [R20]	Current for maximum flow [nominal]	Voltage +20°C (+68°F) [nominal]	Power +20°C (+68°F) [nominal]	Max. required voltage for max flow *2)
(mm)	(Ω)	(mA)	(V)	(W)	(V)
0,8 2,0	14,4	417	6	2,5	9
	57	211	12		18
	130	138	18		27

^{*2)} Please refer to instruction K12M.0001 for recommendation on drive signals


Additional information

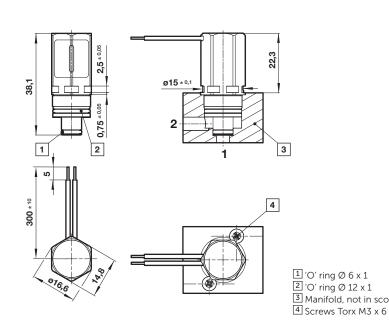
Typical flows vs. supply pressure Air, 20°C, without back pressure

Hysteresis

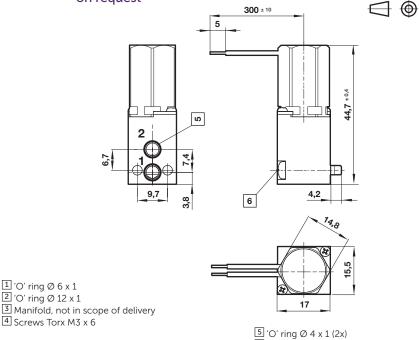
Typical curves for orifice sizes 0,8 mm and 1,6 mm Air, 20°C, without back pressure

Note:

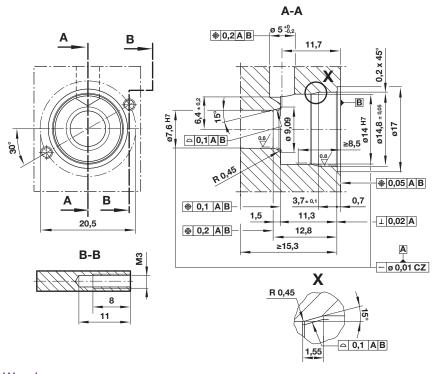
Flow vs. supply pressure curves are for informative purposes only and shall be used only for the pre-selection of the orifice size. Preliminary testing is recommended to take into account all application specific requirements and to select the most adequate orifice.


For further information contact your local fluidic specialist.

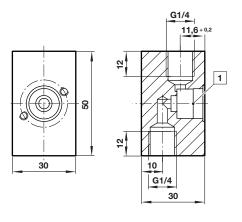
Accessories



FLATPROP cartridge mounting



FLATPROP with manifold on request


Dimensions in mm Projection/first angle

Cartridge fitting D120.0010

Test manifold S120.0152

6 Screws Torx M3 x 18 (2x)

1 Interface geometry see Cartridge fitting D120.0010

Warning

These products are intended for use in air, oxygen and neutral gas systems only. Do not use these products where pressures and temperatures can exceed those listed under »Technical features«.

Before using these products with fluids other than those specified, for non-industrial applications, life-support systems, or other applications not within published specifications, consult IMI Plc., FAS MEDIC SA.

Through misuse, age, or malfunction, components used in fluid power systems can fail in various modes.

The system designer is warned to consider the failure modes of all component parts used in fluid power systems and to provide adequate safeguards to prevent personal injury or damage to equipment in the event of such failure.

System designers must provide a warning to end users in the system instructional manual if protection against a failure mode cannot be adequately provided.

System designers and end users are cautioned to review specific warnings found in instruction sheets packed and shipped with these products.