

Science

IMI FAS

16 mm FLATPROP EQP High flow pressure compensated proportional valve

- 2/2 NC pressure compensated proportional valve
- High flow, high precision
- Increased flow -200 l/min of air at 2.4 bar
- Low power consumption of 2,5 W
- Frictionless design enables high resolution

Technical features

Medium:

Air, oxygen or neutral gases

Orifice: 4.6 mm

Filtration:

A filtration of 20 micrometer is required before the inlet

Operation:

2-way valve, Normally closed

Hysteresis:

See diagrams on page 2

> 200 l/min at 2,4 bar

Operating pressure: 0 ... 7 bar (0 ... 101 psi)

Back pressure:

Maximum 10% of inlet pressure

Mounting: Cartridge

Size: 16 mm

Life expectancy:

≥ 100 Mio. cycles (with triangular

signal)

Internal leakage:

< 10-2 mbar l/s (≈0,6 ml/min)

0 ... pmax

External leakage:

< 10-2 mbar l/s (≈0,6 ml/min)

p = 9.5 bar

Weight:

< 50 g (0,11 lbs)

Ambient/media temperature:

+10 ... +50°C (+50 ... +122°F)

Materials:

Body: Stainless steel only or stainless steel/brass

Seal: FPM, NBR

Contact your local fluid control specialist for information about our manifolding capabilities which include laminated polymer

manifolds.

Electrical details

See technical data -standard coils		
2,5 W nominal at T=20°C		
F (155°C)		
1000 V a.c.		
IP51		
100%		
300 mm A WG24 flying leads		

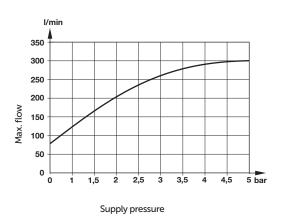
Following options on request

Range of drive current
Higher temperature range
Manifold mount adaptator
EPDM seals
OEM specification

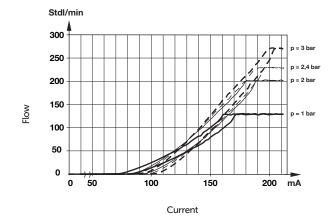
File code: LS_DS_FLATPROP-EQP_en/04/24

Technical data - standard models

Symbol	Current (mA)	Resistance (Ω)	Body Material	Seal Material	Model
12 210	104	230	Stainless steel/Brass	FPM	12-216C-04621+EQPFIL+BDU
	211	57	Stainless steel/Brass	FPM	12-216C-04621+EQPFIL+BED
	417	14,4	Stainless steel/Brass	FPM	12-216C-04621+EQPFIL+BEK
	104	230	Stainless steel/Brass	NBR	12-216C-04620+EQPFIL+BDU
	211	57	Stainless steel/Brass	NBR	12-216C-04620+EQPFIL+BED
	417	14,4	Stainless steel/Brass	NBR	12-216C-04620+EQPFIL+BEK
	104	230	Stainless steel	FPM	12-216C-04641+EQPFIL+BDU
	211	57	Stainless steel	FPM	12-216C-04641+EQPFIL+BED
	417	14,4	Stainless steel	FPM	12-216C-04641+EQPFIL+BEK
	104	230	Stainless steel	NBR	12-216C-04640+EQPFIL+BDU
	211	57	Stainless steel	NBR	12-216C-04640+EQPFIL+BED
	417	14,4	Stainless steel	NBR	12-216C-04640+EQPFIL+BEK


Technical data – standard coils

Valve orifice	Coil resistance at 20°C (+68°F) <u>+</u> 3% [R20]	Current for maximum flow [nominal]	Voltage +20°C (+68°F) [nominal]	Power +20°C (+68°F) [nominal]	Max. required voltage for max flow *1)
(mm)	(Ω)	(mA)	(V)	(W)	(V)
4,6	14,4	417	6	2,5	9
	57	211	12	2,5	18
	230	104	24	2,5	36


^{*1)} Please refer to instruction K12M.0001 for recommendation on drive signals

Additional information

Typical flows vs. supply pressure Air, 20°C, without back pressure

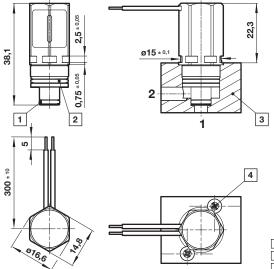
Typical hysteresis curves Air, 20°C, without back pressure

Note:

Flow vs. supply pressure curves are for informative purposes only and shall be used only for the pre-selection of the orifice size. Preliminary testing is recommended to take into account all application specific requirements and to select the most adequate orifice.

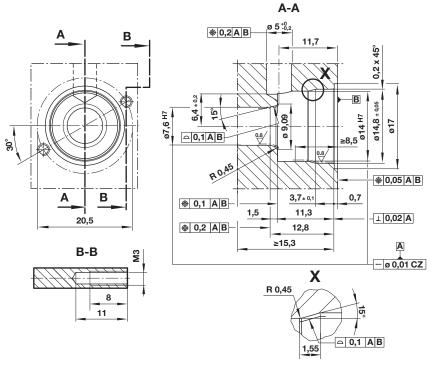
For further information contact your local fluidic specialist.

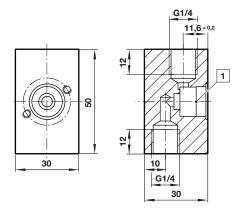
Accessories



FLATPROP EQP cartridge mounting

Dimensions in mm Projection/first angle





- 1 'O' ring Ø 6 x 1
- 2 'O' ring Ø 12 x 1
- 3 Manifold, not in scope of delivery
- 4 Screws Torx M3 x 6

Cartridge fitting D120.0010

Test manifold \$120.0152

1 Interface geometry see Cartridge fitting D120.0010

Warning

These products are intended for use in air, oxygen and neutral gas systems only. Do not use these products where pressures and temperatures can exceed those listed under »Technical features«.

Before using these products with fluids other than those specified, for non-industrial applications, life-support systems, or other applications not within published specifications, consult IMI Plc., FAS MEDIC SA.

Through misuse, age, or malfunction, components used in fluid power systems can fail in various modes.

The system designer is warned to consider the failure modes of all component parts used in fluid power systems and to provide adequate safeguards to prevent personal injury or damage to equipment in the event of such failure.

System designers must provide a warning to end users in the system instructional manual if protection against a failure mode cannot be adequately provided.

System designers and end users are cautioned to review specific warnings found in instruction sheets packed and shipped with these products.