

Climate Control

IMI TA

TA-Nano, TA-Nano Plus

- NPT threads

Combined control & balancing valves for small terminal units

Pressure independent balancing and control valve (PIBCV)

TA-Nano, TA-Nano Plus - NPT threads

The pressure-independent balancing and control valve TA-Nano ensures optimum performance over a long life. Adjustable maximum flow enables design flow and eliminates overflows for accurate hydronic control. The TA-Nano Plus together with our balancing instruments enables advanced measuring and diagnostics.

Key features

Smallest PIBCV in the market fitting within the most constrained area Slim and compact shape simplifies installation.

Precise hydronic balancing Smoothly adjustable setting of max. flow prevents over flow through terminal unit.

Full control of the system (Plus version)
Exact flow measuring and unique
diagnostic functions for ultimate energy
savings and highly reliable system.

Precise setting and ease of commissioning

Valve position visible when actuator is mounted, easy valve identification with colour coding.

High reliability
High resistance to corrosion using
AMETAL®, strong resistance to dirt and
completely tight valve.

Technical description

Application:

Heating (not steam) and cooling systems.

Functions:

Control
Pre-setting (max. flow)
Differential pressure control
Measuring (ΔH, T, q) *
Flushing *
Isolation (for use during system
maintenance – see also Leakage rate)

*) Plus version only

Dimensions:

3/8" - 1"

Pressure class:

PN 25 (362 psi)

Differential pressure (ΔpV):

Max. differential pressure (ΔpV_{max}): 87 psi Min. differential pressure (ΔpV_{min}): Size 3/8", 1/2" LF, 1/2": 2.17 psi Size 1/2" HF / 3/4": 2.61 psi Size 3/4" HF: 4.35 psi Size 1": 3.63 psi

(Valid for position 10, fully open. Other positions will require lower differential pressure, check with the software HvSelect.)

 ΔpV_{max} = The maximum allowed pressure drop over the valve to fulfill all stated performances.

 ΔpV_{min} = The minimum recommended pressure drop over the valve, for proper differential pressure control.

Flow range:

The flow (q_{max}) can be set within the range: 3/8": 0.0859 - 0.881 gpm 1/2" LF: 0.135 - 1.36 gpm 1/2": 0.207 - 2.47 gpm 1/2" HF: 0.643 - 4.98 gpm 3/4": 0.867 - 5.33 gpm 3/4" HF: 0.889 - 7.40 gpm 1": 0.947 - 9.47 gpm

 ${\bf q}_{\rm max}$ = gpm at each setting and fully open valve plug. LF = Low flow

HF = Low flow

Temperature:

Max. working temperature: 248°F Min. working temperature: 14°F

Note: If the medium temperature is below 36°F, then ice forming on the spindle must be prevented. Therefore valves should be insulated with vapor tight insulation (stem extension can be used). IMI valves were tested for performance and durability with mono-ethylene as well as mono-propylene glycol up to a concentration of 57%.

Media:

Water or neutral fluids, water-glycol mixtures (0-57%).

Lift:

0.157 in

Leakage rate:

Tight sealing (Class VI according to EN 60534-4).

Characteristics:

Linear

Material:

Valve body: AMETAL®

Valve insert: AMETAL® and PPS

Valve plug: PPS Spindle: Stainless steel Spindle seal: EPDM O-ring Δp insert: Brass CW614 Membrane: EPDM Springs: Stainless steel

O-rings: EPDM Setting wheel: PA

Measuring points: AMETAL®

Sealings: EPDM

Caps: Polyamide and TPE

AMETAL® is the dezincification resistant alloy of IMI.

Marking:

IMI, PN, DN and flow direction arrow. Insert: TA-Nano, DN (+LF/NF/HF)

LF: Red insert. NF: White insert. HF: Grey insert.

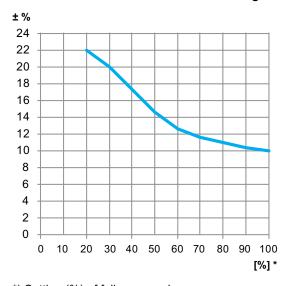
LF = Low flow NF = Normal flow HF = High flow

Connection:

External thread according to ISO 228. Connections (accessories) with internal and external thread NPT according to ANSI/ASME B1.20.1-1983, or for soldering according to ASME/ANSI B16.18. Internal thread according to ANSI/ASME

Connection to actuator:

M30x1.5


Actuators:

B1.20.1-1983.

See separate technical documentation on EMO T II, EMO TM II, TA-TRI and TA-Slider 160.

Measuring accuracy

Maximum flow deviation at different settings

*) Setting (%) of fully open valve.

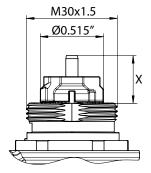
Correction factors

The flow calculations are valid for water ($68^{\circ}F$). For other liquids with approximately the same viscosity as water (\leq 20 cSt = $3^{\circ}E$ = 100S.U.), it is only necessary to compensate for the specific density. However, at low temperatures, the viscosity increases and laminar flow may occur in the valves. This causes a flow deviation that increases with small valves, low settings and low differential pressures. Correction for this deviation can be made with the software HySelect or directly in our balancing instruments.

Noise

In order to avoid noise in the installation, the valve must be correctly installed and the water de-aerated.

Actuators


The valve is developed to work together with recommended actuators according to table. Care should be taken by the user to ensure that actuators not manufactured by IMI are fully compatible to provide optimal control from the valve. Failure to do so may provide unsatisfactory results.

See separate catalogue leaflets for more details about the actuators.

Actuators of other brands require

Working range: X (closed - fully open) = 0.46 in - 0.62 in

Closing force: Min. 22.5 lbf

Maximum recommended pressure drop (ΔpV) for valve and actuator combination

The maximum recommended pressure drop over a valve and actuator combination for close off (ΔpV_{close}) and to fulfill all stated performances (ΔpV_{max}).

Size	EMO T II / EMO TM II / TA-TRI / TA-Slider [psi]
3/8"	
1/2"	87
3/4"	87
1"	

 ΔpV_{close} = The maximum pressure drop that the valve can close against from an opened position, with a specified force by actuator. (Without exceeding stated leakage rate.)

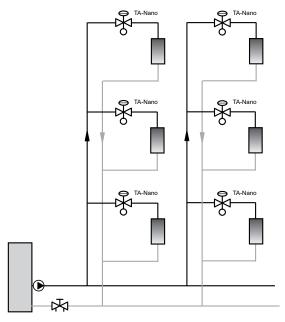
 ΔpV_{max} = The maximum allowed pressure drop over the valve to fulfill all stated performances.

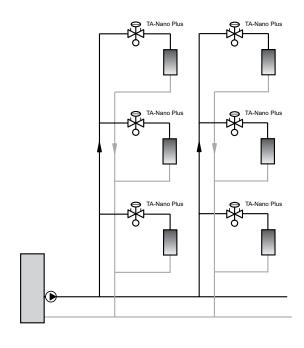
Sizing

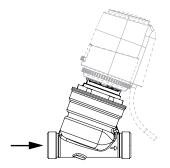
- 1. Choose the smallest valve size that can obtain the design flow with some safety margin, see " q_{max} values". The setting should be as open as possible.
- 2. Check that the available ΔpV is within the working range (according to valve size) 87 psi.

q_{max} values

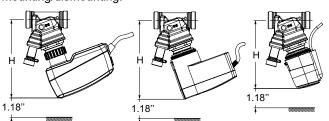
Position 2 3 6 7 8 9 1 4 5 10 3/8" 0.0859 0.261 0.524 0.704 0.797 0.881 0.165 0.344 0.431 0.616 0.404 1/2" LF 0.135 0.267 0.537 0.678 0.815 0.955 1.09 1.22 1.36 1/2" 0.207 0.533 0.837 1.06 1.32 1.58 1.78 1.99 2.22 2.47 1/2" HF 0.643 2.10 3.61 4.58 4.98 1.14 1.62 2.58 3.11 4.11 3/4" 0.867 1.41 1.88 2.37 2.88 3.39 3.94 4.45 4.93 5.33 3/4" HF 0.889 1.55 2.18 2.77 3.44 4.20 4.89 5.81 6.65 7.40 4.73 0.947 1.89 2.84 3.79 5.68 6.63 7.57 8.52 9.47


 $\boldsymbol{q}_{\text{max}}$ = gpm at each setting and fully open valve plug. LF = Low flow

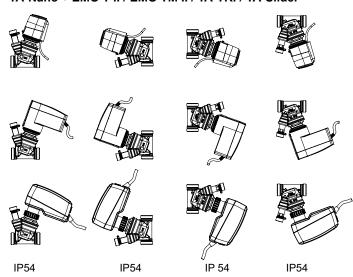

HF = High flow


Installation

Application example



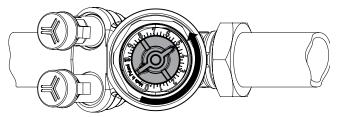
Flow direction


Installation of actuator

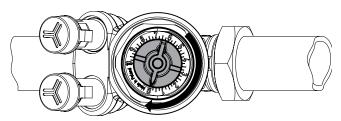
Note: Free space is required above the actuator for easy mounting/dismounting.

Size	Size EMO T/TM H [in]		TA-Slider 160 H [in]	
3/8" - 1"	4.17	4.37	4.80	

TA-Nano + EMO T II / EMO TM II / TA-TRI / TA-Slider



Operating function


Standard / Plus versions

Setting

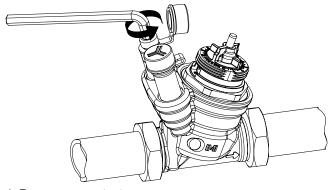
1. Turn the setting wheel to desired value, e.g. 5.0.

Shut-off

1. Turn the setting wheel clockwise to 0.

Plus version

Measuring q

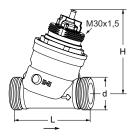

- 1. Remove the installed actuator.
- 2. Connect the IMI TA balancing instrument to the measuring points.
- 3. Input the valve type, size and setting and the actual flow is displayed.

Measuring **AH**

- 1. Remove any actuator.
- 2. Close the valve according to "Shut-off".
- 3. Connect IMI TA balancing instrument to the measuring points and measure.

Important! Reopen the valve to previous setting after the measurement is completed.

Flushing



- 1. Remove any actuator.
- 2. Open the valve fully, setting 10.
- 3. Bypass the Δp-part by inserting a 5 mm Allen key in red measuring point and open ≈1 turn anticlockwise.
- 4. Increase pump head to flush the valve.

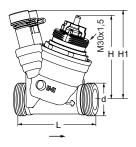
Important! Set the valve to previous setting and close the bypass spindle after the flushing is completed.

Articles - Standard, without measuring points

External thread

Threads according to ISO 228. NPT threads - see "Connections".

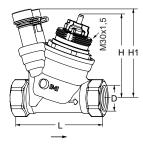
Size	(DN)	d	L [in]	H [in]	q _{max} [gpm]	Weight [lb]	Article No
3/8"	10	G1/2	2.56	2.68	0.881	0.68	322213-00110
1/2" LF	15	G3/4	2.56	2.68	1.36	0.77	322213-00015
1/2"	15	G3/4	2.56	2.68	2.47	0.77	322213-00115
1/2" HF	15	G3/4	2.56	2.68	4.98	0.77	322213-00215
3/4"	20	G1	2.95	2.68	5.33	0.84	322213-00120
3/4" HF	20	G1	2.95	2.68	7.40	0.84	322213-00220
1"	25	G1 1/4	3.23	2.68	9.47	1.10	322213-00125


LF = Low flow

HF = High flow

*) Connection to actuator.

 \rightarrow = Flow direction


Articles - Plus, with measuring points

External thread

Threads according to ISO 228. NPT threads - see "Connections".

Size	(DN)	d	L [in]	H [in]	H1 [in]	q _{max} [gpm]	Weight [lb]	Article No
3/8"	10	G1/2	2.56	2.68	2.83	0.881	0.95	322213-10110
1/2" LF	15	G3/4	2.56	2.68	2.83	1.36	1.04	322213-10015
1/2"	15	G3/4	2.56	2.68	2.83	2.47	1.04	322213-10115
1/2" HF	15	G3/4	2.56	2.68	2.83	4.98	1.04	322213-10215
3/4"	20	G1	2.95	2.68	2.83	5.33	1.12	322213-10120
3/4" HF	20	G1	2.95	2.68	2.83	7.40	1.12	322213-10220
1"	25	G1 1/4	3.23	2.68	2.83	9.47	1.45	322213-10125

Internal thread NPT

Threads according to ANSI/ASME B1.20.1-1983.

Size	(DN)	D	L [in]	H [in]	H1 [in]	q _{max} [gpm]	Weight [lb]	Article No
1/2" LF	15	1/2 NPT	2.95	2.68	2.83	1.36	1.12	322213-13015
1/2"	15	1/2 NPT	2.95	2.68	2.83	2.47	1.12	322213-13115
1/2" HF	15	1/2 NPT	2.95	2.68	2.83	4.98	1.12	322213-13215
3/4"	20	3/4 NPT	2.95	2.68	2.83	5.33	1.15	322213-13120
3/4" HF	20	3/4 NPT	2.95	2.68	2.83	7.40	1.15	322213-13220
1"	25	1 NPT	3.54	2.68	2.83	9.47	1.54	322213-13125

LF = Low flow

HF = High flow

*) Connection to actuator.

 \rightarrow = Flow direction

Connections

With internal thread NPT

Threads according to ANSI/ASME B1.20.1-1983. Swivelling nut. Brass/AMETAL®.

For size	D	D1	L [in] *	Article No
3/8"	G1/2	3/8 NPT	0.83	52 163-210
1/2"	G3/4	1/2 NPT	0.98	52 163-215
3/4"	G1	1/2 NPT	0.71	52 163-320
3/4"	G1	3/4 NPT	0.91	52 163-220
1"	G1 1/4	3/4 NPT	1.06	52 163-325
1"	G1 1/4	1 NPT	1.06	52 163-225

With external thread NPT

Threads according to ANSI/ASME B1.20.1-1983. Swivelling nut. Brass.

For size	D	D1	L [in] *	Article No
3/8"	-	-	-	-
1/2"	G3/4	1/2 NPT	1.14	2400-02.350
3/4"	G1	3/4 NPT	1.28	2400-03.350
1"	G1 1/4	1 NPT	1.38	2400-04.350

Soldering connection

According to ASME/ANSI B16.18.

Swivelling nut. Brass/gunmetal CC491K (EN 1982).

For size	D	Pipe Ø [in]	L [in] *	Article No
3/8"	G1/2	0.504	0.51	52 009-710
1/2"	G3/4	0.629	0.63	52 009-715
3/4"	G1	0.879	0.87	52 009-720
1"	G1 1/4	1.130	1.02	52 009-725

Other type of connections (ISO), see international version of TA-Nano.

^{*)} Fitting length (from the gasket surface to the end of the connection).

Accessories

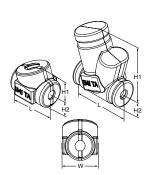
Protection cap

For TA-Nano, TA-COMPACT-P/-DP, TA-Modulator (3/8"-3/4"), TBV-C/-CM.

Color	Article No
Red	52 143-100

Tamper proof cover

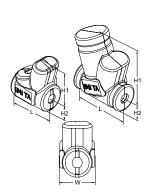
Set containing plastic cover and locking ring for valves with connection M30x1.5 to thermostatic head/actuator. Prevents manipulation of setting.


Article No	
52 164-100	

Spindle extension

Recommended together with the insulation to minimize the risk of condensation at the valve-actuator interface. M30x1,5.

Туре	L [in]	Article No
Plastic, black	1.18	2002-30.700


Insulation for TA-Nano

For heating and non-condensing cooling applications.

Material: EPP (heating) or XPE (cooling).

Fire class: EPP (heating) E (EN 13501-1), B2 (DIN 4102). XPE (cooling) B2 (DIN 4102).

For DN	L	H1	H2	w	Article No
Heating (EPP)					
10-15	97	57	31	84	322213-20001
20	104	56	36	84	322213-20002
Cooling (XPE)					
10-15	126	137	31	76	322213-20111
20	140	137	36	80	322213-20112

Insulation for TA-Nano Plus

For heating and non-condensing cooling applications.

Material: EPP (heating) or XPE (cooling).

Fire class: EPP (heating) E (EN 13501-1), B2 (DIN 4102). XPE (cooling) B2 (DIN 4102).

For DN	L	H1	H2	W	Article No
Heating (EPP)					
10-15	97	88	31	84	322213-20101
20	104	88	36	84	322213-20102
Cooling (XPE)					
10-15	126	137	31	76	322213-20111
20	140	137	36	80	322213-20112

